Установка погружного насоса с герметичным двигателем



Установка погружного насоса с герметичным двигателем
Установка погружного насоса с герметичным двигателем
Установка погружного насоса с герметичным двигателем
Установка погружного насоса с герметичным двигателем
Установка погружного насоса с герметичным двигателем

Владельцы патента RU 2681045:

Акционерное общество "Новомет-Пермь" (RU)

Изобретение относится к насосостроению, в частности к погружным насосным установкам с приводом от герметичного погружного электродвигателя для перекачивания скважинной жидкости. Установка погружного насоса содержит насос, двигатель и магнитную муфту, состоящую из ведущей и ведомой полумуфт с постоянными магнитами, закрепленными на роторе двигателя и роторе насоса соответственно, защитного экрана между ними и промежуточной подшипниковой опоры. Установка дополнительно содержит устройство для охлаждения магнитной муфты. В качестве устройства для охлаждения магнитной муфты может использоваться сепаратор или пакет насосных ступеней. Изобретение обеспечивает длительную работу установки при высоких частотах вращения вала и высоких значениях крутящего момента на валу. 6 з.п. ф-лы, 6 ил.

 

Изобретение относится к насосостроению, в частности к погружным насосным установкам с приводом от герметичного погружного электродвигателя для перекачивания скважинной жидкости.

Известна установка погружного насоса, содержащая герметичный электродвигатель, магнитную муфту, и добывающий насос, в которой внутренняя полость электродвигателя герметична и защищена от попадания внутрь пластовой жидкости, а крутящий момент от вала двигателя к валу насоса передается за счет взаимодействия между постоянными магнитами, закрепленными на ведущей и ведомой полумуфтах магнитной муфты, жестко связанных с валами двигателя и насоса, и разделенными защитным экраном (патент на ПМ №52124, опубл. 10.03.2006).

Отсутствие радиальной опоры внутри магнитной муфты снижает надежность конструкции и накладывает ограничения на длину муфты и величину передаваемого крутящего момента, что делает невозможным использование установки на повышенных частотах вращения вала.

Наиболее близкой к заявляемому изобретению является установка погружного насоса, описанная в патенте US №6863124, Е21В 43/00, 166/64, опубл. 17.07.2003, имеющая в своем составе добывающий насос и погружной электродвигатель, связанные друг с другом посредством магнитной муфты, состоящей из ведущей и ведомой полумуфт с постоянными магнитами, прикрепленными к ротору двигателя и к ротору насоса соответственно, защитным экраном между ними, выполненным из немагнитного непроводящего материала, и промежуточной подшипниковой опоры, имеющей три промежуточных подшипника, концентричных друг другу и размещенных в одном и том же осевом положении. Поверхности сопряжения подшипников располагаются в узком зазоре между защитным экраном и магнитами. Зазор между ведущей полумуфтой и защитным экраном, изолирующей от окружающей среды внутреннюю полость двигателя, заполнен маслом двигателя. Зазор между защитным экраном и ведомой полумуфтой заполняется скважинной жидкостью во время работы установки.

При эксплуатации такой установки в магнитной муфте вследствие вязкого трения в слое жидкости вблизи вращающейся стенки происходит значительный нагрев, тем больший, чем выше вязкость жидкости и частота вращения вала. Отсутствие охлаждения вызывает рост температуры внутри устройства и потерю магнитных свойств постоянных магнитов при достижении температуры Кюри. Кроме того, описанное расположение подшипников либо полностью перекрывает канал для потенциально возможной прокачки охлаждающей жидкости по зазору, либо подразумевает большую толщину зазора. В первом случае неизбежен перегрев муфты, т.е. ограничение срока службы и надежности всей установки, во втором накладывается ограничение по передаваемому крутящему моменту, что приводит к снижению производительности.

Задачей предлагаемого изобретения является разработка надежной конструкции установки погружного насоса с герметичным двигателем, способной длительное время работать при высоких частотах вращения вала и высоких значениях крутящего момента на валу.

Указанный технический результат достигается за счет того, что в установке погружного насоса с герметичным двигателем, включающей погружной насос, двигатель и магнитную муфту, состоящую из ведущей и ведомой полумуфт с постоянными магнитами, закрепленными на роторе двигателя и роторе насоса соответственно, защитного экрана между ними и промежуточной подшипниковой опоры, согласно изобретению дополнительно установлено устройство охлаждения магнитной муфты.

Применение устройства охлаждения магнитной муфты позволит избежать перегрева магнитов, вызванного выделением значительного количества тепла при вращении полумуфт в результате вязкого трения в жидкостях, заполняющих зазоры по разные стороны от защитного экрана. Устройство обеспечивает прокачку жидкости через муфту с удалением лишнего тепла за ее пределы.

Устройством охлаждения магнитной муфты может служить сепаратор вода-нефть, который обеспечивает отбор и сепарацию скважинной жидкости и дальнейшую прокачку сепарированной маловязкой фракции по зазору между защитным экраном и ведомой полумуфтой для охлаждения магнитов. Вариант предпочтителен в случаях, когда скважинная жидкость представляет собой водо-нефтяную смесь.

В случае добычи маловязкой скважинной жидкости достаточное охлаждение муфты осуществляется без дополнительной сепарации добываемой жидкости, поэтому в качестве устройства охлаждения может быть установлен пакет насосных ступеней, обеспечивающий отбор необходимого количества скважинной жидкости, ее дальнейшую прокачку по зазору между защитным экраном и ведомой полумуфтой и выпуск нагретой жидкости обратно в скважину.

В случае добычи высоковязкой скважинной жидкости с низкой обводненностью, устройство охлаждения скважинной жидкости дополнительно оснащено узлом подвода жидкости с поверхности для прокачки по зазору между защитным экраном и ведомой полумуфтой.

Для организации прокачки скважинной жидкости либо отсепарированной от нее воды в ведомой полумуфте выполнено центральное отверстие, гидравлически связанное с вышеупомянутым зазором и возвращающее нагретую жидкость в скважину. Кроме того, в ведущей и ведомой полумуфтах на уровне подшипниковой опоры выполнены выемки, формирующие расширение проточных каналов для циркуляции охлаждающей жидкости в муфте, в которые установлены радиальные подшипники с каналами для прохода охлаждающей жидкости.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлена схема заявляемой установки; на фиг. 2 - общий вид заявляемой установки с устройством охлаждения магнитной муфты в виде сепаратора вода-нефть, на фиг. 3 - общий вид заявляемой установки с пакетом напорных ступеней в составе устройства охлаждения, на фиг. 4 - общий вид заявляемой установки с подачей охлаждающей жидкости с поверхности, на фиг. 5 - радиальный подшипник магнитной муфты, на фиг. 6 - общий вид заявляемой установки с подачей охлаждающей жидкости к магнитной муфте из сепаратора, установленного выше насоса, по соединительной трубке.

Установка погружного насоса содержит погружной электродвигатель 1 и добывающий насос 2 с входным модулем 3, соединенные друг с другом посредством магнитной муфты 4. Между магнитной муфтой 4 и добывающим насосом 2 на общем валу с последним расположено устройство охлаждения магнитной муфты 5 (фиг. 1), снабженное в верхней части узлом отбора скважинной жидкости 6. В зависимости от добываемой жидкости, в частности от таких ее свойств, как обводненность и вязкость, устройство охлаждения включает сепаратор вода-нефть 7, например, роторного или роторно-вихревого типа (фиг. 2), либо пакет насосных ступеней 8 (фиг. 3). Кроме того, устройство охлаждения может иметь в своем составе узел подвода 9 жидкости с поверхности (фиг. 4). Как вариант реализации конструктивного решения сепаратор вода-нефть 7 может быть установлен выше добывающего насоса 2 (фиг. 6).

Муфта 4 состоит из ведущей полумуфты 10, связанной с валом 11 электродвигателя 1, ведомой полумуфты 12, связанной с валом 13 добывающего насоса 2 через вал устройства охлаждения 5, защитного экрана 14 и постоянных магнитов 15, установленных в полумуфтах 10 и 12. Между ведущей полумуфтой 10 и защитным экраном 14 образован кольцевой зазор 16, который заполняют маслом двигателя, а кольцевой зазор 17, образованный между защитным экраном 14 и ведомой полумуфтой 12, предназначен для прохождения охлаждающей жидкости, отбираемой из скважины во время эксплуатации, либо закачиваемой с поверхности по трубке 18 через узел подвода 9 (фиг. 4). В ведомой полумуфте 12 выполнено центральное отверстие 19, гидравлически соединенное с зазором 17 нижним торцевым каналом 20 (фиг. 2), а с затрубным пространством - верхними каналами 21 (фиг. 2, 3).

С целью повышения надежности магнитной муфты 4 в ведущей полумуфте 10 на обеих цилиндрических сторонах и на внешней цилиндрической стороне ведомой 12 полумуфты выполнены выемки 22 с плавными углублениями 23 для установки радиальных подшипников 24, имеющих проточные каналы 25 для свободного прохода охлаждающей жидкости (фиг. 5).

В установках, предназначенных для перекачки жидкости низкой вязкости, устройство для охлаждения включает в себя пакет насосных ступеней 8 (фиг. 3), обеспечивающих отбор необходимого количества скважинной жидкости, ее дальнейшую прокачку по зазору 17 между защитным экраном 14 и ведомой полумуфтой 12 и удаление нагретой жидкости обратно в скважину через центральное отверстие 19 внутри вала 12 и далее через верхние каналы 21.

Как вариант реализации конструктивного решения сепаратор вода-нефть 7 может быть установлен выше добывающего насоса 2, а очищенная жидкость подаваться из сепаратора 7 на вход магнитной муфты 4 через соединительную трубку 26 (фиг 6).

Установка погружного насоса работает следующим образом.

После спуска установки в скважину скважинная жидкость через узел отбора 6 попадает в устройство охлаждения магнитной муфты 5, проходит через проточную часть сепаратора 7 или через проточные каналы пакета насосных ступеней 8, перетекает в магнитную муфту 4, где заполняет кольцевой зазор 17, образованный между защитным экраном 14 и ведомой полумуфтой 12.

При включении электродвигателя 1 связанная с валом 11 электродвигателя ведущая полу муфта 10 приводится во вращение. Постоянные магниты 15, закрепленные на ведущей полумуфте 10, создают вращающееся магнитное поле, взаимодействующее с постоянными магнитами 15, расположенными в ведомой полумуфте 12. При этом ведомая полумуфта 12, связанная с валом 13 сепаратора 7 (или пакета насосных ступеней 8) и установленного последовательно добывающего насоса 2, вовлекается во вращательное движение. Таким образом, осуществляется передача крутящего момента с ведущей полумуфты 10 на ведомую 12 без механического контакта между ними, в результате насос 2 и установленное с ним на общем валу 13 устройство охлаждения 5 магнитной муфты 4 приводятся в действие и начинают прокачивать скважинную жидкость.

Во время работы электродвигателя 1 одна часть общего потока скважинной жидкости поступает внутрь устройства охлаждения 5 магнитной муфты 4 через узел отбора 6, другая, большая часть, - внутрь добывающего насоса 2 через входной модуль 3 насоса 2. В добывающем насосе 2 жидкость приобретает энергию, необходимую для подъема ее из скважины на поверхность. Часть жидкости, поступившая в устройство охлаждения 5, прокачивается через магнитную муфту 4 и возвращается обратно в скважину, унося с собой лишнее тепло.

В одном из вариантов исполнения скважинная жидкость, представляющая собой водо-нефтяную смесь (закрашенные стрелки) поступает внутрь сепаратора 7 (фиг. 2), где вовлекается в процесс сепарации с разделением фаз разной плотности в поле центробежных сил - более плотная (вода) отгоняется к периферии сепаратора, а менее плотная (нефть) скапливается у оси вращения. Сепарированная вода с периферии (контурные стрелки) направляется в кольцевой зазор 17 магнитной муфты 4 и далее через нижний торцевой канал 20 поступает в центральное отверстие 19 ведомой полумуфты 12. При своем движении по зазору 17 сепарированная вода нагревается в результате вязкого трения между вращающейся с высокой частотой стенкой ведомой полумуфты 12 и неподвижной стенкой защитного экрана 14 и, проходя через проточные каналы 25 в радиальных подшипниках 23, уходит в затруб через торцевой канал 21. Благодаря каналам 25 в подшипниках 24, установленных в выемках 22 с плавными углублениями 23 (фиг. 5), поток жидкости не испытывает сопротивления своему течению при движении по зазору 17 в месте установки радиальных подшипников 24. Наряду с этим радиальные подшипники 24, служащие опорой для ведущей 10 и ведомой 12 полумуфт, минимизируют вибрацию системы в целом, что также способствует повышению надежности работы муфты при увеличении частоты вращения вала. Таким образом, нагретый в зазоре 17 поток воды уносится за пределы магнитной муфты 4, замещаясь ненагретым. При этом устанавливается постоянная во времени температура магнитов 15, а также динамическая стабилизация системы, что обеспечивает надежную работу системы в целом.

Маловязкая скважинная жидкость (закрашенные стрелки) не нуждается в сепарации и закачивается в кольцевой зазор 17 ведомой полумуфты 12 магнитной муфты 4 с помощью пакета насосных ступеней 8 (фиг. 3). При своем движении по зазору 17 в результате вязкого трения между вращающейся с высокой частотой стенкой ведомой полумуфты 12 и неподвижной стенкой защитного экрана 14 жидкость нагревается и, проходя через проточные каналы 25 в радиальных подшипниках 24, уходит в затруб через торцевой канал 21.

При использовании установки для добычи скважинной жидкости с высокой вязкостью и низкой обводненностью (фиг. 4), кольцевой зазор 17 между ведомой полумуфтой 12 и защитным экраном 14 заполняется маловязкой жидкостью, подаваемой с поверхности по трубке 18 через узел подвода 9. Вариант исполнения с инжекцией жидкости с поверхности обеспечивает подачу в магнитную муфту 4 чистой жидкости, тем самым предотвращает засорение каналов 17, 20, 21.

Возможен вариант исполнения (фиг. 6), в котором устройство для охлаждения 5 представляет собой сепаратор 7, установленный выше основного насоса 2, при этом отсепарированная маловязкая жидкость с высоким содержанием воды подается в магнитную муфту 4 через соединительную трубку 26 и далее закачивается в кольцевой зазор 17 ведомой полумуфты 12 магнитной муфты 4. При своем движении по зазору 17 в результате вязкого трения между вращающейся с высокой частотой стенкой ведомой полумуфты 12 и неподвижной стенкой защитного экрана 14 жидкость нагревается и, проходя через центральный канал 19 внутри вала 13, проточные каналы 25 радиальных подшипников 24, уходит в затруб через торцевой канал 21.

Следует учесть, что при рассмотрении признаков приведенного изобретения, а также примеров его реализации, для специалиста станут очевидными другие конструктивные изменения и модификации. Например, жидкость со стороны насоса может поступать в центральное отверстие внутри ведомой полумуфты, а выходить через кольцевой канал между защитным экраном и ведомой полумуфтой. Также может быть изменено взаимное расположение ведущей и ведомой полумуфт магнитной муфты -ведущая полумуфта может быть выполнена внутренней, а ведомая - внешней. Все подобные изменения, не имеющие расхождения с сущностью настоящего изобретения, следует считать защищенными в рамках формулы изобретения.

Таким образом, использование заявляемой конструкции для различных скважинных жидкостей позволяет надежно передавать крутящий момент при высоких температурах за счет удаления нагретой жидкости за пределы муфты.

1. Установка погружного насоса с герметичным двигателем, содержащая насос, двигатель и магнитную муфту, состоящую из ведущей и ведомой полумуфт с постоянными магнитами, закрепленными на роторе двигателя и роторе насоса соответственно, защитного экрана между ними и промежуточной подшипниковой опоры, отличающаяся тем, что она дополнительно содержит устройство для охлаждения магнитной муфты.

2. Установка по п. 1, отличающаяся тем, что устройство для охлаждения размещено между магнитной муфтой и насосом.

3. Установка по любому из пп. 1 и 2, отличающаяся тем, что в качестве устройства для охлаждения магнитной муфты использован сепаратор, обеспечивающий отбор, сепарацию скважинной жидкости, дальнейшую прокачку сепарированной маловязкой фракции по зазору между защитным экраном и ведомой полумуфтой для охлаждения магнитов и возврат нагретой жидкости в скважину.

4. Установка по любому из пп. 1 и 2, отличающаяся тем, что устройство для охлаждения магнитной муфты выполнено в виде пакета насосных ступеней, обеспечивающего отбор необходимого количества скважинной жидкости, дальнейшую прокачку по зазору между защитным экраном и ведомой полумуфтой для охлаждения магнитов и возврат нагретой жидкости в скважину.

5. Установка по п. 1, отличающаяся тем, что в ведущей и ведомой полумуфтах на уровне подшипниковой опоры выполнены выемки, формирующие расширение проточных каналов для циркуляции охлаждающей жидкости в муфте, в которые установлены радиальные подшипники с каналами для прохода охлаждающей жидкости.

6. Установка по любому из пп. 1 и 2, отличающаяся тем, что она дополнительно снабжена узлом подвода жидкости с поверхности, гидравлически связанным с зазором между защитным экраном и ведомой полумуфтой.

7. Установка по п. 1, отличающаяся тем, что в качестве устройства для охлаждения магнитной муфты использован сепаратор, установленный выше насоса и связанный с зазором между защитным экраном и ведомой полумуфтой магнитной муфты при помощи соединительной трубки для подвода отсепарированной маловязкой фракции.



 

Похожие патенты:

Изобретение относится к области машиностроения, к скважинным штанговым насосам, и может быть использовано в нефтедобывающей промышленности. Устройство содержит цилиндр с всасывающим клапаном, приемный фильтр, выполненный в виде перфорированного хвостовика со средствами очистки.

Изобретение относится к области машиностроения, в частности к вертикальным плунжерным насосам для перекачивания высоковязких жидкостей с содержанием механических примесей и газа, и может быть в скважинных штанговых насосах.

Изобретение относится к нефтедобывающей промышленности и может найти применение при эксплуатации нефтедобывающих скважин с установками штанговых глубинных насосов, осложненных выносом механических примесей.

Изобретение относится к технике нефтепромыслового оборудования и может быть использовано в штанговых глубинных насосах, работающих в наклонных и горизонтальных скважинах.

Насос // 2674843
Изобретение относится к области машиностроения, в частности к вертикальным плунжерным насосам, особенно для перекачивания высоковязких жидкостей с содержанием механических примесей и газа, в частности к скважинным штанговым насосам, и может быть использовано в нефтедобывающей промышленности.

Группа изобретений относится к нефтедобывающей отрасли, в частности к погружным скважинным насосам с приемным фильтром. Устройство содержит приводной вал, цилиндрический корпус, соединенный телескопически с фильтром.

Изобретение относится к области гидромашиностроения, в частности к скважинным штанговым насосам, предназначенным для добычи жидкости из скважин, и может быть использовано в нефтегазодобывающей отрасли.

Изобретение относится к конструкциям бесштанговых глубинных насосно-скважинных установок возвратно-поступательного движения, в которых используются в качестве привода погружные линейные магнитоэлектрические двигатели.

Изобретение относится к области машиностроения, в частности к вертикальным плунжерным насосам с самодействующими клапанами для перекачивания высоковязких жидкостей с содержанием механических примесей и газа, в частности к скважинным штанговым насосам для использования в нефтедобывающей промышленности.

Изобретение относится к области нефтедобывающей промышленности, в частности к области эксплуатации скважин штанговыми насосами в горизонтальных и наклонных скважинах.

Изобретение относится к способу утилизации попутного газа, образующегося при морской добыче нефти. Технический результат - исключение выбросов попутного газа в атмосферу в виде продуктов его сжигания и снижение затрат на утилизацию по сравнению с существующими методами.

Изобретение относится к способу утилизации попутного газа, образующегося при морской добыче нефти. Технический результат - исключение выбросов попутного газа в атмосферу в виде продуктов его сжигания и снижение затрат на утилизацию по сравнению с существующими методами.

Изобретение относится к разработке глубоководных морских месторождений сжиженного природного газа (СПГ), в частности при освоении арктического Штокмановского газоконденсатного месторождения, посредством скрепленных цехов с камерами, стационарных, с возможностью вывода завода СПГ, расчлененного на цехи, и установки цехов на платформе эстакады на глубине 300 метров и более.

Изобретение относится к развертыванию и непосредственной стыковке подводных трубопроводов, применяемых для транспортировки углеводородов. Способ установки подводного трубопровода, имеющего непосредственную стыковку с подводной конструкцией включает в себя, при вводе трубопровода в водную среду с трубоукладочного судна, создание пластической деформации в области на конце трубопровода, подлежащем стыковке, или вблизи от него, причем указанная пластическая деформация создает радиус rl кривизны на участке трубопровода, расположенном рядом с концом трубопровода, который меньше, чем заданный максимальный радиус RMAX кривизны, для создания стыковочного петлевого температурного компенсатора на стыковочном конце трубопровода, и во время или после стыковки упругое деформирование указанной области путем приложения к трубопроводу растягивающей нагрузки для увеличения ее радиуса кривизны указанной области.

Изобретение относится к развертыванию и непосредственной стыковке подводных трубопроводов, применяемых для транспортировки углеводородов. Способ установки подводного трубопровода, имеющего непосредственную стыковку с подводной конструкцией включает в себя, при вводе трубопровода в водную среду с трубоукладочного судна, создание пластической деформации в области на конце трубопровода, подлежащем стыковке, или вблизи от него, причем указанная пластическая деформация создает радиус rl кривизны на участке трубопровода, расположенном рядом с концом трубопровода, который меньше, чем заданный максимальный радиус RMAX кривизны, для создания стыковочного петлевого температурного компенсатора на стыковочном конце трубопровода, и во время или после стыковки упругое деформирование указанной области путем приложения к трубопроводу растягивающей нагрузки для увеличения ее радиуса кривизны указанной области.

Группа изобретений относится к нефтедобывающей отрасли, в частности к предотвращению замерзания воды в морских трубопроводах. Способ включает обеспечение подводящего трубопровода с системой контроля давления, которая поддерживает давление среды внутри подводящего трубопровода выше 200 бар на всем протяжении эксплуатации с нагнетанием воды с низкой соленостью и временных периодов останова подводящего трубопровода, во время которых подводящий трубопровод остается заполненным неподвижной водой с низкой соленостью.

Группа изобретений относится к морской добыче углеводородов из скважины на платформу. Технический результат – непрерывная добыча углеводородов, за счет непрерывной эксплуатации судна-трубоукладчика.

Группа изобретений относится к подводной обработке скважинных текучих сред при добыче нефти и газа из подводных скважин. Буксируемый блок для подводной обработки скважинных текучих сред содержит пучок трубопроводов, проходящий и выполненный с возможностью нахождения в натяжении между первым буксировочным оголовком на расположенном спереди по потоку конце пучка и вторым буксировочным оголовком на расположенном далее по потоку конце пучка.

Изобретение относится к размещению электрических компонентов, в частности к выполненному с компенсацией давления подводному устройству для размещения в нем электрических компонентов.

Изобретение относится к системе глубоководной добычи нефти в областях, в которых условия могут требовать прекращения работы поверхностных устройств и оборудования и их удаления.

Изобретение относится к способу утилизации попутного газа, образующегося при морской добыче нефти. Технический результат - исключение выбросов попутного газа в атмосферу в виде продуктов его сжигания и снижение затрат на утилизацию по сравнению с существующими методами.

Изобретение относится к насосостроению, в частности к погружным насосным установкам с приводом от герметичного погружного электродвигателя для перекачивания скважинной жидкости. Установка погружного насоса содержит насос, двигатель и магнитную муфту, состоящую из ведущей и ведомой полумуфт с постоянными магнитами, закрепленными на роторе двигателя и роторе насоса соответственно, защитного экрана между ними и промежуточной подшипниковой опоры. Установка дополнительно содержит устройство для охлаждения магнитной муфты. В качестве устройства для охлаждения магнитной муфты может использоваться сепаратор или пакет насосных ступеней. Изобретение обеспечивает длительную работу установки при высоких частотах вращения вала и высоких значениях крутящего момента на валу. 6 з.п. ф-лы, 6 ил.

Наверх