Интеллектуальная система обнаружения и классификации морских целей

Изобретение относится к гидроакустике и может быть использовано для построения интеллектуальных автоматизированных систем классификации морских целей, обнаруженных по признакам амплитудно-фазовой модуляции низкочастотных сигналов накачки морской среды излучениями и полями объектов. Интеллектуальная система обнаружения и классификации морских целей содержит сформированную в морской среде рабочую зону нелинейного взаимодействия и параметрического преобразования волн накачки и информационных волн. Длина рабочей зоны равна протяженности контролируемого участка морской среды, для чего излучающий и приемный преобразователи размещены на противоположных границах участка. Вход излучающего преобразователя соединен подводным кабелем с выходом тракта излучения сигналов накачки, который содержит последовательно соединенные генератор сигналов накачки стабилизированной частоты, усилитель мощности и блок согласования его выхода с подводным кабелем. Выход приемного преобразователя соединен подводным кабелем с входом тракта приема, обработки и регистрации информационных сигналов, который содержит последовательно соединенные широкополосный усилитель, преобразователь частотно-временного масштаба, спектроанализатор и функционально связанный с ним регистратор. Принципиальным отличием от прототипа является то, что дополнительно введен тракт нейросетевого распознавания и классификации, содержащий блок распознавания класса цели по амплитудно-частотным характеристикам, охваченный обратной связью с блоком обучения. При этом выход спектроанализатора тракта приема, обработки и регистрации информационных волн соединен с входом блока распознавания класса цели по амплитудно-частотным характеристикам тракта нейросетевого распознавания и классификации, на выходе которого формируется сигнал по типу цели согласно степени принадлежности исследуемой области спектра объекту классификации. Техническим результатом изобретения является автоматизация процесса распознавания классов морских целей (надводный или подводный объект), обнаруженных по признакам амплитудно-фазовой модуляции низкочастотных сигналов накачки морской среды излучениями и полями объектов. Указанный технический результат достигается путем применения вычислительных операций нейронных сетей и оперативно обновляемой библиотеки математически обработанных образов спектрограмм морских целей. 5 ил.

 

Изобретение относится к гидроакустике и может быть использовано для построения интеллектуальных автоматизированных систем классификации морских целей, обнаруженных по признакам амплитудно-фазовой модуляции низкочастотных сигналов накачки морской среды излучениями и полями объектов.

Принцип работы параметрических антенн основан на использовании естественных нелинейных свойств морской среды (см. Новиков Б.К., Тимошенко В.И. Параметрические антенны в системах гидролокации. - Л.: Судостроение. - 1990. - С. 17-40, 203-225; Мироненко М.В., Малашенко А.Е., Карачун Л.Э., Василенко А.М. Низкочастотный просветный метод дальней гидролокации гидрофизических полей морской среды: монография. - Владивосток: СКБ САМИ ДВО РАН, 2006. - 173 с.). При использовании буксируемых за морскими суднами многоэлементных параметрических антенн, дополнительно к естественным свойствам среды, используются нелинейные свойства кильватерного следа.

Исследованиями и испытаниями параметрических антенн, использующих высокочастотную накачку морской среды (десятки-сотни кГц) показано, что их недостатками, как измерительных систем, являются малая дальность параметрического приема волн (сотни метров и только в отдельных случаях 1-2 километра) и ограниченная возможность измерения пространственно-временных характеристик сигналов, что особенно проявляется при приеме волн различной физической природы низкого, инфразвукового и дробного диапазонов частот.

Параметрические антенны, работа которых основана на низкочастотной подсветке (накачке) среды слабозатухающими сигналами с частотой десятки-сотни герц, представляют собой сформированные в морской среде протяженные объемные зоны нелинейного взаимодействия и параметрического преобразования сигналов. Что приводит к увеличению дальности параметрического приема волн в десятки-сотни раз, относительно высокочастотных параметрических антенн (см. Мироненко М.В., Малашенко А.Е., Василенко А.М. и др. Нелинейная просветная гидроакустика и средства морского приборостроения в создании Дальневосточной радиогидроакустической системы освещения атмосферы, океана и земной коры, мониторинга их полей различной физической природы: монография. - Владивосток: Изд-во Дальневост. ун-та, 2014. - 404 с.; Малашенко А.Е., Мироненко М.В., Чудаков М.В., Пятакович В.А. Дальний параметрический прием электромагнитных волн, формируемых техническими источниками в морской среде. Датчики и системы - М.: 2016. - № 8-9 (206). - С. 14-18.).

Низкочастотные пространственно-развитые параметрические антенны формируются и функционируют на основе закономерностей многолучевого распространения просветных акустических волн (сигналов накачки морской среды стабилизированной частоты в диапазоне десятки-сотни герц) в протяженном гидроакустическом канале с переменными характеристиками среды и его границ. Дальний параметрический прием информационных волн основан на закономерностях нелинейного взаимодействия и параметрического преобразования излученных просветных волн с волнами, генерируемыми техническими объектами (морскими целями), при их совместном распространении в морской среде. Диапазон частот принимаемых волн составляет десятки-единицы килогерц, сотни-десятки-единицы-доли герц, включая сверхнизкочастотные (СНЧ) колебания движущихся объектов.

Наиболее близкой по технической сущности к заявляемому изобретению является гидроакустическая система (пат. №2472116 РФ, МПК G01H 3/00, G 10K 11/00. Гидроакустическая система параметрического приема волн различной физической природы в морской среде; опубл. 10.01.2013, бюл. №1), включающая в себя сформированную в морской среде рабочую зону нелинейного взаимодействия и параметрического преобразования волн накачки и информационных волн, причем длина рабочей зоны равна протяженности контролируемого участка морской среды, для чего излучающий и приемный преобразователи волн размещены на его противоположных границах, при этом вход излучающего преобразователя соединен подводным кабелем с выходом тракта излучения сигналов накачки, который содержит последовательно соединенные генератор сигналов накачки стабилизированной частоты, усилитель мощности и блок согласования его выхода с подводным кабелем, а выход приемного преобразователя соединен подводным кабелем с входом тракта приема, обработки, выделения и регистрации информационных сигналов, который содержит последовательно соединенные широкополосный усилитель параметрически преобразованных волн накачки, преобразователь частотно-временного масштаба, узкополосный анализатор спектра и функционально связанный с ним регистратор информационных волн.

Известно, что результатом параметрического преобразования взаимодействующих волн является их взаимная амплитудно-фазовая модуляция. Малое отличие частот (в пределах одного порядка) просветных волн и волн, генерируемых объектом, обеспечивает наиболее интенсивное их взаимодействие. Амплитуда взаимодействующих волн и индекс фазовой модуляции могут быть представлены в следующем виде

; ,

где γ - коэффициент нелинейности морской среды; , - частота волны накачки и полезного сигнала, соответственно; , - затухание волны накачки и полезного сигнала, соответственно; - объем среды нелинейного взаимодействия и параметрического преобразования волн; - расстояние от точки излучения до точки расположения объекта; - плотность, - скорость звука в морской среде.

Сформированные в результате преобразования просветных волн параметрические составляющие суммарной и разностной частоты при обработке широкополосных сигналов выделяются, как признаки амплитудно-фазовой модуляции, что обосновано математическими зависимостями и подтверждено результатами морских экспериментов (см. Мироненко М.В., Малашенко А.Е., Карачун Л.Э., Василенко А.М. Низкочастотный просветный метод дальней гидролокации гидрофизических полей морской среды: монография. - Владивосток: СКБ САМИ ДВО РАН, 2006. - 173 с.).

Спектр взаимодействующих волн состоит из бесконечного числа боковых составляющих, частоту и амплитуду которых можно найти из известного выражения

,

где , - результирующее и мгновенное значения давления модулированной волны, соответственно; - удвоенная частота модулированной волны; - волна, генерируемая объектом; - время; - функции Бесселя n-го порядка; - амплитуда модулированной волны; - коэффициент модуляции.

Как видно из выражения, значения частот боковых составляющих отличаются от удвоенной центральной частоты 2ω (равной сумме частот взаимодействующих волн) на величину ± n⋅Ω, где n - любое целое число. Амплитуды боковых составляющих для соответствующих частот (2ω± nΩ) определяются величиной множителя .

При малых значениях коэффициента модуляции спектр взаимодействующих волн приближенно состоит из удвоенной центральной частоты 2ω и ее боковых частот 2ω+Ω и 2ω-Ω.

Недостатком системы-прототипа является отсутствие в структурной схеме специальных блоков и их связей с существующими блоками, которые должны обеспечивать распознавание классов обнаруженных морских целей (надводный или подводный объект), что ограничивает функциональные возможности системы-прототипа.

Задача, на решение которой направлено заявляемое изобретение, заключается в дальнейшей разработке структурной схемы системы-прототипа для ее реализации как интеллектуальной системы обнаружения и классификации морских целей, которая должна распознавать класс цели по амплитудно-частотным характеристикам сигналов в автоматизированном режиме работы.

Техническим результатом предлагаемого изобретения является автоматизация процесса распознавания классов морских целей (надводный или подводный объект), обнаруженных по признакам амплитудно-фазовой модуляции низкочастотных сигналов накачки морской среды излучениями и полями объектов.

Указанный технический результат достигается путем применения вычислительных операций нейронных сетей и оперативно обновляемой библиотеки математически обработанных образов спектрограмм морских целей.

Для решения поставленной задачи интеллектуальная система обнаружения и классификации морских целей, содержащая сформированную в морской среде рабочую зону нелинейного взаимодействия и параметрического преобразования волн накачки и информационных волн, причем длина рабочей зоны равна протяженности контролируемого участка морской среды, для чего излучающий и приемный преобразователи размещены на его противоположных границах, при этом вход излучающего преобразователя соединен подводным кабелем с выходом тракта излучения сигналов накачки, который содержит последовательно соединенные генератор сигналов накачки стабилизированной частоты, усилитель мощности и блок согласования его выхода с подводным кабелем, а выход приемного преобразователя соединен подводным кабелем с входом тракта приема, обработки и регистрации информационных сигналов, который содержит последовательно соединенные широкополосный усилитель, преобразователь частотно-временного масштаба, спектроанализатор и функционально связанный с ним регистратор. Принципиальным отличием от прототипа является то, что дополнительно введен тракт нейросетевого распознавания и классификации, содержащий блок распознавания класса цели по амплитудно-частотным характеристикам, охваченный обратной связью с блоком обучения; при этом выход спектроанализатора тракта приема, обработки и регистрации информационных волн соединен с входом блока распознавания класса цели по амплитудно-частотным характеристикам тракта нейросетевого распознавания и классификации, на выходе которого формируется сигнал по типу цели согласно степени принадлежности исследуемой области спектра объекту классификации.

Как известно, извлечение полезной информации из гидроакустических сигналов определяет основы алгоритмизации обработки данных в интеллектуальной системе обнаружения и классификации морских целей. Для формирования вектора признаков, являющегося входным информационным массивом распознающей сети, используется метод масок. Процесс формирования информационных массивов необходим для решения двух задач, первая из которых представляет собой процесс формирования эталонных образцов, необходимых для реализации процесса обучения распознающей сети, и вторая для распознавания целей (см. Пятакович В.А., Богданов В.И., Назаренко П.К. Принцип автоматического распознавания образа цели: материалы Международной конференции «Математическое моделирование физических, экономических, технических, социальных систем и процессов». − Ульяновск: УГУ, 2003. − С. 31, 32; Пятакович В.А., Василенко А.М., Хотинский О.В. Распознавание и классификация источников формирования полей различной физической природы в морской среде: монография. - Владивосток: Мор. гос. ун-т, 2017. - 255 с.; Пятакович В.А., Василенко А.М., Хотинский О.В. Нейросетевые технологии в интеллектуальных системах обнаружения и оперативной идентификации морских целей: монография. - Владивосток: Мор. гос. ун-т, 2018. - 263 с.).

Идея метода состоит в том, что для каждой маски ищется максимальное амплитудное значение, которое и является ортом вектора классификационных признаков. Для автоматизации процесса поиска экстремума в зоне одной маски использовалась сеть поиска максимума MAXNET. Итерации сети завершаются после того, как выходные нейроны сети перестают меняться. Тип элементов входных сигналов - целые или действительные числа, тип элементов выходных сигналов - действительные числа. Размерности входных и выходных сигналов совпадают. Тип активационной функции - линейная с насыщением (используется линейный участок). Число синапсов в сети равно N (N - 1). Формирование синаптических весов происходит согласно формуле

где Wij - i-й синаптический вес j-го нейрона; N - число элементов входного сигнала (количество нейронов в сети).

Функционирование сети задается выражением

где xj - элемент (орт) входного сигнала сети; yi - выход j-го нейрона.

Нормализация входного вектора признаков, полученного после анализа масок сетью MAXNET, производится согласно выражению

Границы диапазона значений известны и определяются моделью входного гидроакустического сигнала.

Обучение распознающей сети производится на основе алгоритма обратного распространения ошибки, реализующего градиентный метод оптимизации функционала вида: где Т - вектор синаптических весов сети; (Х*,Y*) - обучающие пары; - норма вектора (см. Пятакович В.А., Василенко А.М., Хотинский О.В. Распознавание и классификация источников формирования полей различной физической природы в морской среде: монография.-Владивосток: Морской гос. ун-т им. Г.И. Невельского, 2017. - 255 с.; Пятакович В.А., Василенко А.М. Предварительная обработка информации нейроноподобным категоризатором при распознавании образов морских объектов. Подводное морское оружие. - СПб: 2017. - Вып. 1 (32). - С. 31-34; Пятакович В.А., Василенко А.М. Перспективы и ограничения использования геометрических методов распознавания акустических образов морских объектов применительно к задаче управления нейросетевой экспертной системой. Фундаментальные исследования. - М: 2017. - № 7. - С. 65-70;).

Изобретение поясняется чертежами, где на фиг. 1 показана функциональная схема интеллектуальной системы обнаружения и классификации морских целей, содержащей следующие элементы:

1. Излучающий преобразователь (подводный звуковой маяк марки ПЗМ-400 излучающий сигналы на частоте около 400 Гц).

2. Приемный преобразователь.

3. Морская среда.

4. Рабочая зона нелинейного взаимодействия и параметрического преобразования волн накачки и информационных волн.

5. Объекты (морские цели, генерирующие акустические, электромагнитные и гидродинамические излучения).

6. Тракт излучения сигналов накачки.

6.1. Генератор сигналов накачки стабилизированной частоты.

6.2. Усилитель мощности.

6.3. Блок согласования.

7. Тракт приема, обработки и регистрации информационных сигналов.

7.1. Широкополосный усилитель.

7.2. Преобразователь частотно-временного масштаба.

7.3. Спектроанализатор.

7.4. Рекордер.

8. Тракт нейросетевого распознавания и классификации.

8.1. Блок распознавания класса цели по амплитудно-частотным характеристикам.

8.2. Блок обучения.

Общая структура распознающей сети представлена на фиг. 2. Нейроны, составляющие сеть, одинаковы и имеют функцию активации известного типа

где x2n(i), yn(i) и In(i) - значения r - го входного сигнала, выходного сигнала и внешнего смещения n - го нейрона i - го слоя; Ni - число нейронов в i - м слое; i = 1, 2, 3.

На фиг. 3 и фиг. 4 представлены результаты вычислительного эксперимента по определению коэффициента распознавания (классификации), определяемого как отношение числа распознанных объектов к общему числу испытаний в процентах, для надводных и подводных объектов в условиях зашумления сигнала в диапазоне от -10 до 20 дБ. Как видно из рисунков, распознавание и классификация морских целей с помощью вычислительных операций сети персептрон позволяет повысить вероятность классификации как надводных, так и подводных целей на 5-7%.

На фиг. 5 приведена таблица интерпретации элементов выходного вектора распознавания гидроакустических сигналов по амплитудно-частотной характеристике.

Интеллектуальная система обнаружения и классификации морских целей работает следующим образом.

Излучающий преобразователь 1 и приемный преобразователь 2 размещают в морской среде 3 с учетом закономерностей многолучевого распространения волн в протяженном гидроакустическом канале, что обеспечивает формирование и эффективное использование пространственно-развитой рабочей зоны 4 нелинейного взаимодействия и параметрического преобразования просветных волн и волн различной физической природы, генерируемых объектами 5 (см. Свидетельство о государственной регистрации программы для ЭВМ «Расчет лучевой картины» №2016616822 от 21.06.2016; Свидетельство о государственной регистрации программы для ЭВМ «Программа имитационного моделирования процесса распространения гидроакустических сигналов» №2017664296 от 20.12.2017; Свидетельство о государственной регистрации программы для ЭВМ «Программно-вычислительный комплекс имитационного моделирования морской информационной ситуации при идентификации целей» № 2018612944 от 01.03.2018).

Сформированный генератором 6.1 сигнал накачки стабилизированной частоты поступает на вход усилителя мощности 6.2, затем на вход блока согласования 6.3 выхода усилителя мощности 6.2 с подводным кабелем, соединяющим выход тракта излучения сигналов накачки 6 и вход излучающего преобразователя 1.

Излучающий преобразователь 1 озвучивает среду сигналами накачки стабилизированной частоты в диапазоне десятки-сотни герц.

На различных режимах движения объекты 5 генерируют излучения, приводящие к изменению величины характеристик проводящей жидкости (плотности и (или) температуры и (или) теплоемкости и т.д.), которые в зависимости от их физической сущности модулируют низкочастотные сигналы накачки морской среды. В спектре информационной волны появляются низкочастотные и высокочастотные составляющие, как результат модуляции амплитуды и фазы низкочастотной волны накачки излучениями и полями объектов 5. Являясь неразрывно связанной компонентой просветной волны, модуляционные составляющие переносятся на большие расстояния и обнаруживаются в блоках тракта приема, обработки и регистрации информационных сигналов 7.

Сигнал приемного преобразователя 2 по кабельной линии подается на вход широкополосного усилителя 7.1 тракта приема обработки и регистрации информационных сигналов 7. Задачей блоков, входящих в состав тракта приема обработки и регистрации информационных сигналов 2, является измерение признаков проявления информационных волн источников.

Сигнал с выхода широкополосного усилителя 7.1 подается на вход преобразователя частотно-временного масштаба 7.2. Преобразователь частотно-временного масштаба сигнала обеспечивает увеличение концентрации энергии просветных сигналов и эффективность выделения из них признаков полей, формируемых объектами.

Сигнал с выхода преобразователя частотно-временного масштаба 7.1 поступает на вход спектроанализатора 7.3. Задачей спектрального анализа является выделение дискретных составляющих суммарной или разностной частоты в узкополосных спектрах преобразованных информационных сигналов, по которым восстанавливают характеристики волн объектов 5.

Далее сигнал с выхода спектроанализатора 7.3 передается на вход рекордера 7.4 и на вход блока распознавания класса цели по амплитудно-частотным характеристикам 8.1 тракта нейросетевого распознавания и классификации 8. Задача распознавания и классификации надводных и подводных источников гидроакустических сигналов решается с помощью трехслойной нейронной сети, которая распознает семь объектов и позволяет выделить один неизвестный класс, что в перспективе позволит значительно расширить круг распознаваемых морских технических объектов.

Анализ низкочастотной, среднечастотной и высокочастотной составляющих амплитудно-частотной характеристики производится раздельно, так как генеральные признаки для различных типов объектов могут находиться в различных частотных диапазонах. Как показано на фиг. 2, на каждый нейрон первого слоя через синапсы с весами {Tij(1)}, i = 1, 2, 3; j = 1, 2, 3 подаются все компоненты входного вектора На каждый нейрон второго слоя через синапсы с весами {Tij(2)}, i = 1, 2, 3; j = 1, 2, 3 подаются выходные сигналы первого слоя. На каждый нейрон третьего слоя через синапсы с весами {Tij(3)}, i = 1, 2, 3; j = 1, 2, 3 подаются выходные сигналы второго слоя. Значения выходных сигналов третьего слоя образуют вектор решений элементы которого представлены в табл.1. на фиг. 5.

Набор выходных сигналов блока распознавания класса цели по амплитудно-частотным характеристикам 8.1 поступает в память блока обучения 8.2, где происходит сравнение результатов с математическими образами спектрограмм морских объектов для формирования вывода о степени принадлежности исследуемой области спектра объекту классификации, а настройка весовых коэффициентов распознающей сети определяется алгоритмом обратного распространения ошибки. Основная идея которого состоит в распространении сигналов ошибки от выходов сети к её входам, в направлении, обратном прямому распространению сигналов в обычном режиме работы. Для возможности применения метода обратного распространения ошибки необходимо, чтобы передаточная функция нейронов была дифференцируема.

Сформированный третьим слоем распознающей нейронной сети сигнал по типу цели, согласно степени принадлежности исследуемой области спектра объекту классификации, поступает с выхода блока 8.2 на вход блока 8.1, выход которого является выходом тракта нейросетевого распознавания и классификации 8.

Таким образом, обнаружив цель по признакам амплитудно-фазовой модуляции низкочастотных сигналов накачки морской среды излучениями и полями объекта и используя оперативно обновляемую библиотеку математически обработанных образов спектрограмм морских целей, а также архитектуру распознающей нейронной сети в виде трехслойного персептрона, можно в автоматизированном режиме распознавать класс цели по амплитудно-частотным характеристикам и делать вывод о степени принадлежности исследуемой области спектра объекту классификации.

Интеллектуальная система обнаружения и классификации морских целей промышленно применима, так как для ее создания используются распространенные компоненты и изделия радиотехнической промышленности и вычислительной техники.

Интеллектуальная система обнаружения и классификации морских целей, содержащая сформированную в морской среде рабочую зону нелинейного взаимодействия и параметрического преобразования волн накачки и информационных волн, причем длина рабочей зоны равна протяженности контролируемого участка морской среды, для чего излучающий и приемный преобразователи размещены на противоположных границах участка, при этом вход излучающего преобразователя соединен подводным кабелем с выходом тракта излучения сигналов накачки, который содержит последовательно соединенные генератор сигналов накачки стабилизированной частоты, усилитель мощности и блок согласования его выхода с подводным кабелем, а выход приемного преобразователя соединен подводным кабелем с входом тракта приема, обработки и регистрации информационных сигналов, который содержит последовательно соединенные широкополосный усилитель, преобразователь частотно-временного масштаба, спектроанализатор и функционально связанный с ним регистратор, отличающаяся тем, что дополнительно введен тракт нейросетевого распознавания и классификации, содержащий блок распознавания класса цели по амплитудно-частотным характеристикам, охваченный обратной связью с блоком обучения; при этом выход спектроанализатора тракта приема, обработки и регистрации информационных волн соединен с входом блока распознавания класса цели по амплитудно-частотным характеристикам тракта нейросетевого распознавания и классификации, на выходе которого формируется сигнал по типу цели согласно степени принадлежности исследуемой области спектра объекту классификации.



 

Похожие патенты:

Изобретение относится к области гидроакустики и может быть использовано для обнаружения малоразмерных целей, в том числе в акваториях, нуждающихся в охране от несанкционированного проникновения.

Заявляемый объект относится к области пассивной локации (в частности, гидролокации) и может быть использован, например, при создании системы мониторинга обстановки в охраняемой морской экономической зоне.

Изобретение относится к области гидроакустики, а именно к способу регистрации уровня шумоизлучения морского объекта. Техническим результатом изобретения является способ регистрации уровня шумоизлучения морского объекта в широкой полосе частот, который может быть использован для регистрации и измерения параметров первичного гидроакустического поля (в частности, гидроакустического давления) движущегося морского объекта.

Заявляемый объект относится к области пассивной локации (гидролокации) и используется при создании системы мониторинга обстановки в морской зоне. Техническим результатом является определение координат обнаруженных целей и принятие решения о классе каждой из них.

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого и глубокого моря путем использования приемной системы на основе комбинированного приемника, в которой формируется множество информативных параметров.

Изобретение относится к области гидроакустики и может быть использовано при разработке средств поиска объектов, находящихся на дне под слоем грунта и невидимых для таких гидролокационных средств, как гидролокатор бокового обзора.

Изобретение относится к области детекторов присутствия и связи между такими детекторами. Технический результат состоит в том, что информацию о присутствии передают между различными детекторами присутствия без какой-либо необходимости в дополнительных системах связи, тем самым снижая техническую сложность и расходы.
Изобретение относится к устройствам для видеоконтроля водных акваторий с обеспечением регистрации нештатных ситуаций, связанных с движением судов по несанкционированным курсам или их нахождением в запретных зонах.

Изобретение относится к области гидроакустики, а именно к способу регистрации шумоизлучения малошумного морского объекта. Техническим результатом изобретения является способ регистрации шумоизлучения малошумного морского объекта в широкой полосе частот с использованием медианной фильтрации, который может быть использован при измерении первичного гидроакустического поля малошумных морских объектов в условиях наличия импульсных помех, случайных выбросов в тракте обработки сигналов, повышенного уровня и нестационарности фоновых шумов (помех) в пределах времени регистрации прохода морского объекта, а также может быть использован в охранных устройствах для защиты морских акваторий, портовых и других сооружений.

Изобретение относится к области активно-пассивной гидролокации. Предложен способ определения эффективности многопозиционной активно-пассивной гидроакустической системы, заключающийся в вычислении зон вероятности обнаружения сигнала в виде сечений зон в горизонтальной или вертикальной плоскости при заданной вероятности ложной тревоги, различных конфигураций системы излучающих и приемных антенн и для меняющихся гидрологических условий заданного региона.

Изобретение относится к области гидроакустики и может быть использовано для построения экспертных интеллектуальных систем распознавания и классификации источников гидроакустических сигналов, обнаруженных в режиме шумопеленгования. Система обнаружения гидроакустических сигналов и их нейросетевой классификации, содержащая аналого-цифровой преобразователь, на вход которого подается входной сигнал, а выход которого соединен с входом рециркулятора, выход которого соединен с входами М узкополосных фильтров. Выходы М узкополосных фильтров соединены с первыми входами Μ пар перемножителей, выходы которых соединены с входами Μ пар интеграторов, выходы которых соединены с входами Μ пар квадраторов. Выходы Μ пар квадраторов попарно соединены с входами Μ сумматоров, выходы которых соединены с входами М вычислителей квадратного корня, выходы которых соединены с входами Μ устройств задержки, выходы которых соединены с М входами сумматора, выход которого соединен с входом порогового устройства. 2М выходов постоянного запоминающего устройства соединены со вторыми входами М пар перемножителей. Выходы управляющего устройства соединены с управляющими входами аналого-цифрового преобразователя, рециркулятора, постоянного запоминающего устройства и порогового устройства. Принципиальным отличием от прототипа является, что дополнительно введен тракт нейросетевого распознавания и классификации целей, содержащий блок распознавания класса цели по амплитудно-частотной характеристике, охваченный обратной связью с блоком обучения. При этом выход порогового устройства соединен с входом блока распознавания класса цели по амплитудно-частотной характеристике, на выходе которого формируется сигнал по типу цели согласно степени принадлежности исследуемой области спектра объекту классификации. Техническим результатом изобретения является обеспечение автоматического распознавания и классификации надводных и подводных источников гидроакустических сигналов, обнаруженных в режиме шумопеленгования. 5 ил.

Изобретение относится к гидроакустике и может быть использовано для построения интеллектуальных автоматизированных систем классификации морских целей, обнаруженных по признакам амплитудно-фазовой модуляции низкочастотных сигналов накачки морской среды излучениями и полями объектов. Интеллектуальная система обнаружения и классификации морских целей содержит сформированную в морской среде рабочую зону нелинейного взаимодействия и параметрического преобразования волн накачки и информационных волн. Длина рабочей зоны равна протяженности контролируемого участка морской среды, для чего излучающий и приемный преобразователи размещены на противоположных границах участка. Вход излучающего преобразователя соединен подводным кабелем с выходом тракта излучения сигналов накачки, который содержит последовательно соединенные генератор сигналов накачки стабилизированной частоты, усилитель мощности и блок согласования его выхода с подводным кабелем. Выход приемного преобразователя соединен подводным кабелем с входом тракта приема, обработки и регистрации информационных сигналов, который содержит последовательно соединенные широкополосный усилитель, преобразователь частотно-временного масштаба, спектроанализатор и функционально связанный с ним регистратор. Принципиальным отличием от прототипа является то, что дополнительно введен тракт нейросетевого распознавания и классификации, содержащий блок распознавания класса цели по амплитудно-частотным характеристикам, охваченный обратной связью с блоком обучения. При этом выход спектроанализатора тракта приема, обработки и регистрации информационных волн соединен с входом блока распознавания класса цели по амплитудно-частотным характеристикам тракта нейросетевого распознавания и классификации, на выходе которого формируется сигнал по типу цели согласно степени принадлежности исследуемой области спектра объекту классификации. Техническим результатом изобретения является автоматизация процесса распознавания классов морских целей, обнаруженных по признакам амплитудно-фазовой модуляции низкочастотных сигналов накачки морской среды излучениями и полями объектов. Указанный технический результат достигается путем применения вычислительных операций нейронных сетей и оперативно обновляемой библиотеки математически обработанных образов спектрограмм морских целей. 5 ил.

Наверх