Радиопоглощающий конструкционный материал

Изобретение относится к радиопоглощающим конструкционным материалам. Материал содержит 30-60 мас.% карбида кремния, 20-50 мас.% наполнителей в виде ферритов на основе ВаО и СoО и остальное керамическая связка на основе титаната марганца и оксида алюминия. Материал обладает достаточно высокой прочностью, широким диапазоном рабочих частот, в котором обеспечивается поглощение электромагнитного излучения, и работоспособностью при повышенных температурах. 3 пр.

 

Изобретение относится к области радиотехники, и может быть использовано для создания деталей и элементов, поглощающих радиоволны сверхвысокочастотного (СВЧ) диапазона.

Одной из областей применения радиопоглощающих материалов (РПМ) и радиопоглощающих покрытий (РПП) является уменьшение отраженного сигнала с целью уменьшения радиолокационной заметности военной техники, в частности самолетов. Для решения таких задач необходимо создание РПМ, поглощающих излучение в широком СВЧ поддиапазоне при тяжелых условиях эксплуатации.

Широко известными и широко применяемыми радиопоглощающими материалами являются материалы на основе полимерного связующего с наполнителями различных типов (ферритов, металлов, полупроводников и т.д.). Основным их применением является создание на их основе радиопоглощающего покрытия, наносимое на конструкционный материал (обычно металл), из-за их низкой прочности и низких рабочих температур.

Известен радиопоглощающий материал, включающий в себя в качестве полимерного связующего синтетический клей "Элатон" на основе латекса и в качестве магнитного наполнителя - порошкообразный феррит или карбонильное железо при соотношении компонентов, мас. %: синтетический клей "Элатон" на основе латекса 80-20, порошкообразный феррит или карбонильное железо 20-80. [Патент РФ №2155420]

Недостатком такого материала является низкие прочностные характеристики получаемого покрытия, а также низкий диапазон рабочих температур, ограниченные главным образом связующего компонента - синтетического клея.

Известен поглотитель электромагнитных волн, который представляет собой многослойное интерференционное покрытие, включающее несколько слоев переменной толщины, между которыми расположены двухмерные решетки резонансных элементов. [Патент РФ №2119216].

Существенным недостатком такого поглотителя является сложная технология его создания, требующая точного изготовления и контроля толщины каждого слоя диэлектрика и резонансных объектов.

Большой интерес представляют радиопоглощающие материалы, которые могут быть использованы для непосредственного изготовления деталей и узлов, т.е. быть конструкционными. Для таких материалов важна технологичность их получения, а также простота изготовления конечных изделий из них.

Известен композиционный радиопоглощающий конструкционный материал, который представляет собой монолитную композицию двух «пакетов», первый из которых выполняет функцию радиопоглощающего пакета, в состав которого введены пленки гидрогенизированного аморфного углерода с наночастицами 3d-металлов. Второй пакет воспринимает основную прочностную нагрузку. [Патент РФ №2623577]

Недостатком такого конструкционного материала является крайне узкий диапазон поглощаемого электромагнитного излучения (ЭМИ), а также невозможность применения такого материала в высокотемпературных элементах.

Наиболее близким является композиционный материал на основе карбида кремния с наполнителем из карбонильного железа в который, в качестве спекающей добавки, введено 20% силикатного стекла [Патент РФ №2324991]. Обжиг и прессование осуществляют в одной и той же форме, выполненной из графита. Обжиг осуществляют в одну стадию при температуре не более 900°С.

К недостаткам прототипа можно отнести низкий значения коэффициентов поглощения и отражения. Также прочностные характеристики предложенного материала определяются исключительно прочностью силикатного стекла. Этот факт вместе с низкой температурой спекания приводит к ограничению в диапазоне рабочих температур, как по прочностным характеристикам так и по радиопоглощающим.

Задачей предлагаемого изобретения является создание конструкционного радиопоглощающего материала с наполнителем.

Техническим результатом является достаточная высокая прочность керамического материала, широкий диапазон рабочих частот, в котором обеспечивается поглощение ЭМИ, работоспособность материала при повышенных температурах.

Технический результат достигается тем, что радиопоглощающий конструкционный материал, содержит в своем составе в качестве наполнителей ферриты на основе ВаО и СоО и в качестве керамической связки используется добавка на основе титаната марганца и оксида алюминия при следующем соотношении компонентов, мас. %: SiC - 30-60, Ферриты - 20-50, керамическая связка - остальное.

В отличии от прототипа, в предлагаемом изобретении в качестве наполнителя вместо карбонильного железа используются ферриты на основе ВаО и СоО. Известна низкая стойкость карбонильного железа к длительным тепловым нагрузкам. Введение в состав ферритов ВаО и СоО позволило расширить диапазон рабочих температур до 700 град.С.

В предлагаемом изобретении поглощение электромагнитного излучения происходит за счет двух типов поглощения. Магнитные потери обусловлены наличием в составе феррита BaO6-Fe2O3 и феррита CoO-Fe2O3. Феррит бария за счет гексагональной структуры имеет наибольшую эффективность в сантиметровой области длин волн, в то время как феррит кобальта имеет кубическую структуру и вносит существенный вклад в поглощение ЭМИ в области дециметровых длин волн.

Применение в качестве матрицы композиционного материала карбида кремния позволяет применять предлагаемый материал в качестве высокотемпературного конструкционного материала. Также карбид кремния является полупроводниковым материалом и также вносит существенный вклад радиопоглощение за счет полупроводникового типа поглощения, обусловленного потерями на электропроводность. Также карбидкремниевая матрица является отделителем частиц ферритов между собой.

В отличии от прототипа, в качестве спекающей добавки используется добавка на основе титаната марганца и оксида алюминия. Данная добавка является низкотемпературной (1300 град.С), что позволяет не подвергать ферриты влиянию высоких температур при спекании, но в то же время позволяет получать материал достаточной прочности для его использования в качестве конструкционного.

Пример 1.

Радиопоглощающий конструкционный материал, содержащий карбид кремния и наполнители, отличающийся тем, что он содержит керамическую связку на основе титаната марганца и оксида алюминия, при этом в качестве наполнителей он содержит ферриты на основе ВаО и СаО при следующем соотношении компонентов, мас. %: карбид кремния - 40, ферриты на основе ВаО и СоО - 40, керамическая связка на основе титаната марганца и оксида алюминия - 20. Образцы изготавливаются методом горячего шликерного литья. Данная технология является простой и позволяет получать изделия сложной геометрической формы и обеспечивает высокую производительность. Технология включает в себя следующие этапы: подготовка исходных порошков, смешивание, подготовку горячего шликера, формование заготовки под давлением, предварительный обжиг, обжиг изделия. В отличие от технологии прессования, полученные образцы и изделия не нуждаются в дополнительной механической обработке.

Полученные образцы были испытаны на прочность при трехточечном изгибе в соответствии с ГОСТ 24409-80. Прочность полученного материала составила 65 МПа при комнатной температуре. Прочность материала при температуре 700°С составила 64 МПа. Предел прочности при сжатии составил 97 МПа. Микротвердость материала составляет 2034±50 МПа. Для измерения радиопоглощающих свойств применялся измеритель панорамный КСВН Р2-137. Предлагаемый материал имеет следующие характеристики: коэффициент ослабления отраженного сигнала при частоте 2 ГГц при температуре 20°С: -4,1 Дб, коэффициент ослабления отраженного сигнала при частоте 18 ГГц при температуре 20°С: -5,4 Дб, коэффициент ослабления отраженного сигнала при частоте 2 ГГц при температуре 700°С: -4,4 Дб, коэффициент ослабления отраженного сигнала при частоте 18 ГГц при температуре 700°С: -5,2 Дб.

Пример 2.

Изготовление образцов проводилось аналогично примеру 1, но при других значениях соотношений компонентов, мас. %: карбид кремния - 30, ферриты на основе ВаО и СоО - 50, керамическая связка на основе титаната марганца и оксида алюминия - 20. Полученный материал по прочностным характеристикам близок к материалу в примере 1. Данный материал наиболее применим в областях более высоких частот вследствие повышенных значений поглощения в этой области: Коэффициент ослабления отраженного сигнала при частоте 2 ГГц при температуре 20°С: -3,5 Дб, коэффициент ослабления отраженного сигнала при частоте 18 ГГц при температуре 20°С: -6,1 Дб, коэффициент ослабления отраженного сигнала при частоте 2 ГГц при температуре 700°С: -3,4 Дб, коэффициент ослабления отраженного сигнала при частоте 18 ГГц при температуре 700°С: -6,0 Дб.

Пример 3.

Изготовление образцов проводилось аналогично примеру 1, но при других значениях соотношений компонентов, мас. %: карбид кремния - 60, ферриты на основе ВаО и СоО - 20, керамическая связка на основе титаната марганца и оксида алюминия - 20. Полученный материал по прочностным характеристикам близок к материалу в примере 1. Данный материал наиболее применим в областях более низких частот вследствие повышенных значений поглощения в этой области: Коэффициент ослабления отраженного сигнала при частоте 2 ГГц при температуре 20°С: -5,1 Дб, коэффициент ослабления отраженного сигнала при частоте 18 ГГц при температуре 20°С: -3,4 Дб, коэффициент ослабления отраженного сигнала при частоте 2 ГГц при температуре 700°С: -5,4 Дб, коэффициент ослабления отраженного сигнала при частоте 18 ГГц при температуре 700°С: -3,2 Дб.

Радиопоглощающий конструкционный материал, содержащий карбид кремния и наполнители, отличающийся тем, что он содержит керамическую связку на основе титаната марганца и оксида алюминия, при этом в качестве наполнителей он содержит ферриты на основе ВаО и СoО при следующем соотношении компонентов, мас. %:

карбид кремния 30-60
ферриты на основе ВаО и СоО 20-50
керамическая связка на основе титаната
марганца и оксида алюминия остальное



 

Похожие патенты:

Изобретение относится к технике сверхвысоких частот и предназначено для уменьшения радиолокационной заметности объектов военной техники, например летательных аппаратов.

Изобретение относится к элементам электрического оборудования, поглощающим излученные антенной электромагнитные волны с целью уменьшения отражений при калибровке радиоизмерительных или радиолокационных устройств.

Изобретение относится к маскировочным радиопоглощающим покрытиям, снижающим заметность объектов техники, а более конкретно к устройствам для поглощения излучаемых электромагнитных волн, выполненных из композитных пористых материалов на основе вспененных высокомолекулярных соединений, содержащих распределенные электропроводящие элементы.Композитное радиопоглощающее покрытие содержит основу из пенополиуретана, в объеме которого распределены функциональные электропроводящие частицы.Новым является то, что функциональные частицы выполнены в виде фрагментов микропровода длиной 0,3-3,0 мм и диаметром 3-40 мкм из аморфного кобальта, помещенного внутри стеклянной оболочки.Предложенное техническое решение обеспечило расширение функциональных возможностей маскирующего покрытия высококонтрастных объектов за счет кратного повышения магнитных свойств покрытия..

Изобретение относится к технологии изготовления керамических изделий для электронной и радиотехнической промышленности и может быть использовано при производстве поглотителей электромагнитного излучения, например в мощных генераторах, усилителях, лампах бегущей волны, клистронах и антенно-фидерных системах.
Изобретение относится к радиотехнике, а конкретно к формированию покрытий, уменьшающих заметность объектов при их обнаружении радаром, и может быть использовано при создании противорадиолокационных покрытий, материалов и устройств, изменяющих фоно-целевые образы транспортных средств и других объектов путем нанесения или накрытия защищаемого объекта противорадиолокационным покрытием, изготовленным в соответствии с предложенным способом.
Изобретение относится к области высокотемпературных широкополосных конструкционных радиопоглощающих материалов, которое может быть использовано для эффективного снижения уровня отраженного электромагнитного излучения в диапазоне 1-18 ГГц.

Изобретение относится к технологии изготовления и применения композиционных материалов, состав и структура которых обеспечивает эффективное поглощение электромагнитной энергии в определенном диапазоне длин радиоволн.

Изобретение относится к материалам для поглощения электромагнитного излучения и может быть использовано для обеспечения электромагнитной совместимости радиоэлектронных устройств, защиты биологических объектов от электромагнитного излучения, а также для снижения радиозаметности объектов военного и гражданского назначения.

Изобретение относится к области вспомогательных средств радиоэлектронного оборудования и, дополнительно, может быть использовано в качестве низкопотенциального источника тепловой энергии.

Изобретение относится к области радиопоглощающих материалов и конструкциям поглотителей, а конкретней к системам защиты от сверхвысокочастотного электромагнитного излучения, и может быть использовано для решения задач электромагнитной совместимости радиоэлектронных систем и комплексов, при создании безэховых камер и многофункциональных экранированных помещений, а также для снижения вредного воздействия высокочастотного излучения на организм человека.

Группа изобретений относится к изготовлению режущего устройства. Режущее устройство содержит карбидный субстрат, содержащий кобальт, и полученный спеканием порошка слой поликристаллического алмаза.

Изобретение относится к получению металлокерамической порошковой композиции, использующейся для изготовления деталей методом аддитивных технологий. Способ включает приготовление порошковой смеси и механический синтез смеси в планетарной мельнице.
Изобретение относится к получению композиционного материала на основе карбидов кремния и титана, включающий приготовление порошковой смеси, состоящей из титана, карбида кремния и графита, и механоактивацию порошковой смеси.
Группа изобретений относится к получению композиционного материала, содержащего металлическую матрицу и упрочняющие наночастицы. Способ включает подготовку смеси исходных материалов и ее механическое легирование.

Изобретение относится к изготовлению композиционного материала для изделий электронной техники СВЧ на основе металлической матрицы в виде алюминиевого сплава и неметаллического наполнителя в виде карбида кремния.

Группа изобретений относится к изготовлению гибридных композиционных материалов с высокими значениями прочности, твердости и вязкости разрушения. Шихта содержит 25-65 об.% порошка карбида вольфрама, 10-30 об.% порошка стали Гадфильда 110Г13, 25-65 об.% порошков диоксида циркония и оксида алюминия при их весовом соотношении 4:1.

Изобретение относится к технологии получения окислительно-стойких ультравысокотемпературных керамических композиционных материалов состава MB2/SiC, где М=Zr и/или Hf с нанокристаллическим карбидом кремния, которые могут быть использованы в качестве окислительно-, химически- и эрозионно-стойких материалов в потоках воздуха при температурах выше 2000°С, для создания авиационной, космической и ракетной техники, отопительных систем, теплоэлектростанций, а также в технологиях атомной энергетики, в химической и нефтехимической промышленности.
Группа изобретений относится к получению цементированного карбида, который может быть использован для изготовления режущего инструмента. Способ включает стадии формирования шлама, содержащего жидкость для измельчения, порошки связующих металлов, первую порошковую фракцию и вторую порошковую фракцию, измельчение, сушку, прессование и спекание шлама.

Изобретение относится к неорганической химии и неорганическому материаловедению, конкретно к получению порошковых материалов состава MB2-SiC, где М = Zr, Hf, содержащих нанокристаллический карбид кремния.

Изобретение относится к получению заготовок вольфрамо-титанового твердого сплава. Способ включает горячее прессование порошка в вакууме с пропусканием высокоамперного тока через пресс-форму и прессуемый порошок при температуре 1320°С в течение 3 минут.

Изобретение относится к композициям для термостойких теплоизоляционных пеноматериалов, которые могут быть использованы в качестве высокотемпературной теплоизоляции, работающей в условиях окислительной среды.

Изобретение относится к радиопоглощающим конструкционным материалам. Материал содержит 30-60 мас. карбида кремния, 20-50 мас. наполнителей в виде ферритов на основе ВаО и СoО и остальное керамическая связка на основе титаната марганца и оксида алюминия. Материал обладает достаточно высокой прочностью, широким диапазоном рабочих частот, в котором обеспечивается поглощение электромагнитного излучения, и работоспособностью при повышенных температурах. 3 пр.

Наверх