Дуговой способ получения графена

Изобретение относится к области нанотехнологий и может быть использовано для получения композиционных материалов с высокой электро- и теплопроводностью. Графитовый стержень заполняют графитовым порошком с добавкой порошка кремния в концентрации 16,5-28 мас. % или карбида кремния в соответствующей концентрации по кремнию. Осуществляют электродуговое распыление графитовых стержней при постоянном токе в инертной атмосфере при отношении площадей анода к катоду 1:8. Продуктом реакции является композит, состоящий из графена с примесью наночастиц карбида кремния без примеси иных углеродных форм. Изобретение обеспечивает получение графенового материала высокого качества простым способом. 6 ил.

 

Изобретение относится к области нанотехнологий и может быть использовано для получения графена и композиционных материалов с высокой электро- и теплопроводностью на основе графена. Наиболее перспективным, относительно недорогим и доступным методом для получения графена достаточно высокого качества является химическое газофазное осаждение (CVD) на поверхности таких переходных металлов как Ni, Pd, Ru, Ir, Cu и др. Данный метод изучался и использовался еще до открытия графена. О формировании графеновых структур (тонкий графит) в результате подготовки поверхностей переходных металлов в промышленном гетерогенном катализе было известно в течение почти 50 лет. Графитизация поверхности металлов использовалась с целью изменения физических свойств поверхности и предотвращения коррозии. Слои графита впервые были обнаружены на поверхностях Ni, которые подвергались воздействию источников углерода в виде углеводородов или газообразного углерода. На сегодняшний день методом CVD получают поликристаллические пленки графена больших размеров. Преимуществом данного метода является масштабируемость получаемых образцов. Трудности этого метода связаны с контролем роста единичного слоя и наличием дефектов получаемого материала. Так же недостатком данного метода является необходимостью переноса графеновой пленки, выращенной на поверхности металла, на нужную поверхность. В процессе переноса пленки используют такие методы как вакуумное, химическое и электрохимическое травление металлических подложек. Механизм роста пленки связан с двумя процессами. Первый, термическое разложение углеродосодержащих газов на поверхности металлов. Второй, растворение углерода в металле при высоких температурах и последующая сегрегация (выделение) на поверхности углерода, при охлаждении металлической подложки. Растворимость углерода в металле, кристаллическая решетка материала подложки и условия процесса роста определяют морфологию и толщину (количество слоев) графеновой пленки. Рост на гексагональной решетке часто называют эпитаксиальным, даже если нет значительного совпадения между решеткой графита и подложки.

Альтернативным методом синтеза графена является электрическая дуга с графитовыми электродами (углеродная дуга). Углеродная дуга широко используется для синтеза различных УНМ, таких, как фуллерены, углеродные нанотрубки, луковичные структуры и графен. В большинстве случаев дуговой материал представляет собой смесь наноматериалов различного типа, в различных пропорциях, которые зависят от параметров разряда, атмосферы разряда и катализатора. Обогащение получаемой в углеродной дуге сажи графеновыми структурами происходит при использовании в качестве буферного газа смеси Н2+Не, H2+N2, H2+N2+He, H2+Ar, NH3 (при давлениях 400-700 тор). Данный эффект связывается с гидрированием углеродных кластеров зародышей, что предотвращает их свертывание в замкнутые структуры. Так же на формирование графеновых структур влияет теплоемкость и теплопроводность смеси буферных газов. При изменении температурного градиента в реакторе изменяется время пребывания углеродных фрагментов в области нуклеации углеродных кластеров и роста графитовых фрагментов. Наличие водорода в смеси при разряде не обязательное условие, известно, что графеновые плоскости в дуговом разряде так же формируются в атмосфере СО и воздуха (который в условиях разряда представляет собой смесь СО+N2), но при давлениях 1000-1300 тор.

Известен способ получения графена с высокой степенью кристалличности (патент CN №102153076, 2011 г., B82Y40/00; С01В 31/04), включающий электродуговое распыление графитовых стержней в различных газовых смесях, для распыления используется дуга постоянного тока.

Недостатками этого способа являются наличие в продуктах аморфного углерода, необходимость использовать водород для синтеза графена.

Наиболее близким по технической сущности заявляемому способу является способ (патент KR 20140092642, 2014 г., B01J 19/10; С01В 31/02; Н05В 7/18) получения графена высокого качества с использованием электродугового разряда, включающий электродуговое распыление графитовых стержней, при котором происходит распыление графитового электрода с введенной добавкой металла - катализатора. Ввод катализатора происходит путем запрессовки смеси порошков (металл и графит) в графитовый электрод.

Недостатком данного решения является наличие в продуктах синтеза различных наноформ графита (кроме графена присутствуют луковичные частицы, нанотрубки, фуллерены).

Задачей изобретения является разработка простого способа производства графенового материала высокого качества, без примеси иных углеродных форм.

Поставленная задача решается тем, что в дуговом способе получения графена, включающем электродуговое распыление графитовых стержней при постоянном токе в инертной атмосфере, при котором графитовый стержень заполняют графитовым порошком с добавкой, согласно изобретению, в качестве добавки используют порошок кремния в концентрации 16,5-28% по массе или карбида кремния в соответствующей концентрации по кремнию, отношение площадей анода к катоду 1:8, продуктом реакции является композит, состоящий из графена с примесью наночастиц карбида кремния.

Присутствие кремния существенно влияет на конденсацию паров углерода в плазменно-дуговой технологии синтеза. Основной эффект влияния состоит в увеличении доли графена в синтезированном материале при увеличении концентрации кремния. Данные измерений РФА и КР свидетельствуют о том, что формирование графеновых плоскостей коррелирует с присутствием наночастиц карбида кремния. Этот факт позволяет заключить, что наночастицы карбида кремния являются прекурсором для роста графена. На основе проведения качественного анализа процессов, происходящих при конденсации Si-C пара, сделано заключение о двух механизмах влияния кремния на конденсацию углерода. Во-первых, конденсация паров кремния, сопровождающаяся химической реакцией образования карбида кремния, влияет на кинетику конденсации углерода и подавливает формирование замкнутых углеродных кластеров. Во-вторых, формирование кристаллов карбида кремния приводит к возможности С - грани кристаллов карбида кремния выступать в роли шаблона для роста графеновых плоскостей. Отношение площадей анода к катоду 1:8 влияет на скорость распыления электродов и определяет соотношение концентраций паров кремния и углерода при конденсации.

Наличие аморфного углерода определялось на основе изображений просвечивающего электронного микроскопа. На фиг. 1-4 видно, что с увеличением концентрации кремния количество аморфного углерода снижается и при концентрации 16,5% и выше отсутствует.

На фиг. 1 показано ПЭМВР (просвечивающий электронный микроскоп высокого разрешения) изображение материала, синтезированного при распылении Si-C с концентрацией кремния - 16,5% mass.

На фиг. 2 показано ПЭМВР изображение материала, синтезированного при распылении Si-C с концентрацией кремния - 13% mass.

На фиг. 3 показано ПЭМВР изображение материала, синтезированного при распылении Si-C с концентрацией кремния - 8% mass.

На фиг. 4 показано ПЭМВР изображение материала, синтезированного при распылении Si-C с концентрацией кремниям - 4,7% mass.

На фиг. 5 показано ПЭМВР изображение чистого С.

На фиг. 6 показано ПЭМВР изображение частицы SiC.

Способ осуществляется следующим образом.

Кремниевый порошок смешивается с графитовым и запрессовывается в центральное отверстие графитового электрода, без использования дополнительных связующих. При этом концентрация кремния к углероду в электроде должна соответствовать диапазону 16,5-28% по массе. Диаметры анода и катода выбираются 50 и 400 мм2, соответственно. Анодное распыление электрода происходит в атмосфере гелия при давлениях от 10 до 200 тор. Анодное распыление электрода происходит при напряжении 20 В, токе разряда 100-200 А. Сбор материала осуществляется с охлаждаемых стенок реактора.

Использование изобретения позволяет получать сажу состоящую из стопок графеновых слоев, с количеством графеновых слоев от 1 до 7. При концентрации добавки кремния больше 16,5% в материале отсутствует аморфный углерод, материал состоит только из графеновых плоскостей и наночастиц карбида кремния. Использование изобретения позволяет получать наночастицы карбида кремния диаметром 10-15 нм.

Дуговой способ получения графена, включающий электродуговое распыление графитовых стержней при постоянном токе в инертной атмосфере, при котором графитовый стержень заполняют графитовым порошком с добавкой, отличающийся тем, что в качестве добавки используют порошок кремния в концентрации 16,5-28% по массе или карбида кремния в соответствующей концентрации по кремнию, отношение площадей анода к катоду 1:8, продуктом реакции является композит, состоящий из графена с примесью наночастиц карбида кремния.



 

Похожие патенты:
Изобретение относится к области химической технологии и может быть использовано для изготовления блоков из графитовых деталей, способных использоваться при высоких температурах.

Изобретение относится к нанотехнологии. Порошок карбоксилированных наноалмазов суспендируют в жидкой среде из группы, включающей полярные протонные или апротонные растворители, биполярные апротонные растворители, ионные жидкости или их смеси, например, в воде.

Изобретение может быть использовано в качестве электродного материала в химических источниках тока, носителя катализаторов и сорбента медицинского назначения. Металлорганическое соединение - глицеролат цинка состава Zn(С3Н7О3)4 - термообрабатывают в инертной атмосфере при 500-750°С.

Изобретения могут быть использованы при изготовлении материалов для аэрокосмической, ракетной и военной техники, а также для электронной промышленности. Огнеупорный высокопрочный композит (ОВК) образован как многослойная структура путем многопроходной пакетной прокатки (МПП) и состоит из повторения пакетов слоёв углерода в виде графита или графена, а также слоёв металлов, по крайней мере один из которых является тугоплавким, и/или соединений металлов, в состав которых входит минимум один тугоплавкий металл, и/или карбида тугоплавкого металла.

Изобретение может быть использовано в квантовой физике, биологии и медицине. Готовят смесь из порошков углеводорода и легирующей добавки, в которую дополнительно вводят порошок ультрадисперсного алмаза с размером частиц 3-4 нм.

Изобретение относится к способу экстракции соединения ряда фосгена из исходного потока газа, включающему: обеспечение мембранного контакторного модуля, содержащего мембрану, которая имеет по меньшей мере две стороны: газовую сторону и жидкостную сторону; обеспечение возможности протекания исходного потока газа, содержащего соединение ряда фосгена на газовой стороне мембраны; и обеспечение возможности протекания потока жидкого экстрагента, подходящего для растворения соединения ряда фосгена, на жидкостной стороне мембранного контакторного модуля, чтобы поток жидкого экстрагента абсорбировал соединение ряда фосгена из исходного потока газа и обеспечивал второй поток жидкого экстрагента, обогащенный соединением ряда фосгена, причем исходный поток газа содержит соединение ряда фосгена и второе газообразное соединение, выбираемое из группы, состоящей из хлороводорода, угарного газа, углекислого газа, азота и/или хлора, а также любой их комбинации; в котором поток жидкого экстрагента имеет в отношении соединения ряда фосгена более высокую растворяющую способность, чем в отношении второго газообразного соединения; и в котором обеспечивается обедненный соединением ряда фосгена поток второго газа.

Изобретение относится к получению порошков тугоплавких карбидов переходных металлов IV и V подгрупп с температурой плавления, превышающей 3000°С. Способ включает термообработку шихты, отмывку и сушку порошка.

Изобретение относится к производству углекислого газа, предназначенного для применения в газированных напитках. Установка термического разложения 100 содержит генератор радиочастотной (РЧ) энергии 130, РЧ-антенну 135 или электрод, подключенный к указанному генератору РЧ-энергии 130 для подведения тепла для термического разложения материала (гидрокарбоната натрия), по меньшей мере одну капсулу 120, содержащую термически разлагаемый материал, капсульную камеру 110 с герметизируемым отверстием, выполненную с возможностью помещения и содержания в себе по меньшей мере одной капсулы 120, а также способностью выдерживания заданного давления, образующегося в указанной капсуле 120, и по меньшей мере один канал 140, имеющий первый конец 145а, открытый со стороны указанной капсулы 120, и второй конец 145b, соединенный с напорным клапаном 150.

Изобретение относится к способу риформинга содержащих углеводороды и диоксид углерода газовых смесей. Способ включает приведение в контакт исходного газа с содержащим благородный металл катализатором, превращение газа в первый газообразный продукт, приведение в контакт полученного первого газообразного продукта с не содержащим благородный металл катализатором и превращение первого газообразного продукта во второй газообразный продукт, при этом технологическое давление способа составляет от 5 до 200 бар.

Изобретение может быть использовано в химической промышленности. Получение синтез-газа для производства аммиака из содержащего углеводороды сырья 20 включает стадии первичной конверсии 21 с водяным паром, вторичной конверсии 23 с потоком оксиданта и очистку потока, выходящего со стадии вторичной конверсии.

Изобретение относится к нанотехнологии. Порошок карбоксилированных наноалмазов суспендируют в жидкой среде из группы, включающей полярные протонные или апротонные растворители, биполярные апротонные растворители, ионные жидкости или их смеси, например, в воде.

Изобретение относится к измерительной технике и может быть использовано в атомно-силовой микроскопии для диагностирования наноразмерных структур. Сущность изобретения заключается в том, что сканирующий зонд содержит кантилевер, соединенный с зондирующей иглой, которая продета и жестко закреплена в одной из сквозных нанопор стеклянной сферы большего диаметра с квантовыми точками структуры ядро-оболочка, а вершина зондирующей иглы, выходящая из стеклянной сферы большего диаметра, подвижно соединена с помощью двух вложенных углеродных нанотрубок с отделяемой и автономно функционирующей стеклянной сферой малого диаметра со сквозными нанопорами, заполненными квантовыми точками и магнитными наночастицами с одинаковой ориентацией полюсов структуры ядро-оболочка.

Изобретение относится к получению спеченных изделий из электроэрозионных вольфрамсодержащих нанокомпозиционных порошков. Ведут электроэрозионное диспергирование отходов стали Р6М5 и твердого сплава ВК8 в керосине осветительном.

Изобретение относится к способам получения полиакриламидного гидрогеля, который может быть использован в области сельского хозяйства, в медицине, косметологии, для очистки нефтяных трубопроводов и для создания предметов гигиены.

Изобретение относится к технологии получения полупроводниковых материалов. Cпособ выращивания нитевидных нанокристаллов (ННК) SiO2 включает подготовку монокристаллической кремниевой пластины путем нанесения на ее поверхность мелкодисперсных частиц металла-катализатора с последующим помещением в ростовую печь, нагревом и осаждением кремния из газовой фазы, содержащей SiCl4, Н2 и O2, по схеме пар→жидкая капля→кристалл с одновременным его окислением, при этом катализатор выбирают из ряда металлов, имеющих количественные значения логарифма упругости диссоциации для реакции образования оксида , где Me - металл, О - кислород, n и m - индексы, при 1000 K, более -36,1, причем частицы металла-катализатора выбирают с диаметрами менее 100 нм, а температуру процесса выращивания устанавливают в интервале 1000-1300 K.

Изобретения могут быть использованы при изготовлении материалов для аэрокосмической, ракетной и военной техники, а также для электронной промышленности. Огнеупорный высокопрочный композит (ОВК) образован как многослойная структура путем многопроходной пакетной прокатки (МПП) и состоит из повторения пакетов слоёв углерода в виде графита или графена, а также слоёв металлов, по крайней мере один из которых является тугоплавким, и/или соединений металлов, в состав которых входит минимум один тугоплавкий металл, и/или карбида тугоплавкого металла.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта одуванчика характеризуется тем, что сухой экстракт одуванчика добавляют в суспензию гуаровой камеди в этаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 900 об/мин, далее приливают серный эфир, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта заманихи характеризуется тем, что сухой экстракт заманихи добавляют в суспензию гуаровой камеди в гексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают ацетонитрил, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта девясила характеризуется тем, что сухой экстракт девясила добавляют в суспензию гуаровой камеди в метаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают 6 мл петролейного эфира, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.

Изобретение относится к нанотехнологии и может быть использовано для исследования образцов, например биоматериалов и изделий медицинского назначения, методами сканирующей зондовой микроскопии.

Изобретение относится к нанотехнологии. Порошок карбоксилированных наноалмазов суспендируют в жидкой среде из группы, включающей полярные протонные или апротонные растворители, биполярные апротонные растворители, ионные жидкости или их смеси, например, в воде.

Изобретение относится к области нанотехнологий и может быть использовано для получения композиционных материалов с высокой электро- и теплопроводностью. Графитовый стержень заполняют графитовым порошком с добавкой порошка кремния в концентрации 16,5-28 мас. или карбида кремния в соответствующей концентрации по кремнию. Осуществляют электродуговое распыление графитовых стержней при постоянном токе в инертной атмосфере при отношении площадей анода к катоду 1:8. Продуктом реакции является композит, состоящий из графена с примесью наночастиц карбида кремния без примеси иных углеродных форм. Изобретение обеспечивает получение графенового материала высокого качества простым способом. 6 ил.

Наверх