Способ регулирования авиационного турбореактивного двигателя с изменяемой геометрией выходного устройства

Способ регулирования авиационного турбореактивного двигателя (ТРД) с изменяемой геометрией выходного устройства относится к способам регулирования, оптимизирующим работу ТРД в зависимости от условий полета. При осуществлении способа создают на входе в двигатель и на выходе из него условия, соответствующие различным условиям полета по высоте и скорости, измеряют значения тяги и расхода топлива и строят зависимости расхода топлива от тяги. Согласно изобретению предварительно проводят испытания с различным диаметром критического сечения реактивного сопла, при каждом диаметре создают на входе в двигатель и на выходе из двигателя давление и температуру воздуха, соответствующие условиям крейсерских полетов и условиям режима максимальной дальности, определяют диаметр критического сечения реактивного сопла, соответствующий минимальному удельному расходу топлива на выбранном режиме полета, затем по сигналу с борта самолета при крейсерских полетах и полетах на максимальную дальность изменяют диаметр критического сечения реактивного сопла на диаметр, обеспечивающий минимальный удельный расход топлива. Осуществление изобретения позволяет повысить экономичность двигателя на крейсерских режимах полета самолета при поддержании заданного диаметра критического сечения реактивного сопла. 1 ил., 1 табл.

 

Изобретение относится к области авиационного двигателестроения, в частности, к способам регулирования, оптимизирующим работу турбореактивного двигателя (ТРД) в зависимости от условий полета.

Известен способ регулирования авиационного ТРД с изменяемой геометрией выходного устройства, включающий поддержание заданной степени расширения на турбине в зависимости от температуры воздуха на входе в двигатель, при котором создают на входе в двигатель и на выходе из двигателя условия, соответствующие различным условиям полета по высоте и скорости, измеряют значения тяги и расхода топлива и строят зависимости расхода топлива от тяги (RU, 2578780 класса F02C 9/26, опубл. 27.03.2016 г.).

Данный способ не является оптимальным вследствие того, что он применим только для двигателей, работающих на регуляторе, поддерживающем заданную степень расширения на турбине в зависимости от температуры воздуха на входе в двигатель, во всем диапазоне высот, скоростей и режимов работы двигателя. Способ не применим для двигателей, работающих на крейсерских режимах работы с поддержанием заданного диаметра критического сечения реактивного сопла.

Ожидаемый технический результат - повышение экономичности двигателя на крейсерских режимах полета самолета при поддержании заданного диаметра критического сечения реактивного сопла.

Ожидаемый технический результат достигается тем, что в известном способе регулирования авиационного ТРД с изменяемой геометрией выходного устройства, при котором создают на входе в двигатель и на выходе из двигателя условия, соответствующие различным условиям полета по высоте и скорости, измеряют значения тяги и расхода топлива и строят зависимости расхода топлива от тяги, согласно изобретению, для двигателей, работающих на крейсерских режимах полета с поддержанием заданного диаметра критического сечения реактивного сопла, предварительно проводят испытания с различным диаметром критического сечения реактивного сопла, при каждом диаметре создают на входе в двигатель и на выходе из двигателя давление и температуру воздуха, соответствующие условиям крейсерских полетов и условиям режима максимальной дальности, определяют диаметр критического сечения реактивного сопла, соответствующий минимальному удельному расходу топлива на выбранном режиме полета, затем по сигналу с борта самолета при крейсерских полетах и полетах на максимальную дальность изменяют диаметр критического сечения реактивного сопла на диаметр, обеспечивающий минимальный удельный расход топлива.

Способ реализуется следующим образом.

При имитации полета на высоте Н=11000 м и скорости полета, соответствующей числу Маха М=0,9 (давление окружающей среды Рокр=0,224 кг/см2, температура окружающей среды Токр=-56,5°С, давление воздуха на входе в двигатель Рвх=0,38 кг/см2, температура воздуха на входе в двигатель Твх=-21,1°С) проводят испытания с различным диаметром критического сечения реактивного сопла DPC=580 мм, 600 мм, 620 мм.

При каждом диаметре критического сечения реактивного сопла измеряют тягу R и удельный расход топлива CR.

По полученным данным строят зависимости CR=f(R) (см. приведенный график) и по ним определяют минимальный удельный расход топлива CR при заданном значении тяги, и соответствующий данному расходу диаметр критического сечения реактивного сопла DPC. В таблице приведен удельный расход топлива в зависимости от диаметра критического сечения реактивного сопла при тяге R=2500 кгс.

При полете самолета на максимальную дальность на высоте Н=11000 м по сигналу с борта самолета изменяют диаметр критического сечения реактивного сопла на диаметр DPC=600 мм, что обеспечивает снижение удельного расхода топлива, и, следовательно, увеличение продолжительности и дальности полета.

Осуществление изобретения позволяет повысить экономичность двигателя на крейсерских режимах полета самолета при поддержании заданного диаметра критического сечения реактивного сопла.

Способ регулирования авиационного турбореактивного двигателя с изменяемой геометрией выходного устройства, при котором создают на входе в двигатель и на выходе из двигателя условия, соответствующие различным условиям полета по высоте и скорости, измеряют значения тяги и расхода топлива и строят зависимости расхода топлива от тяги, отличающийся тем, что для двигателей, работающих на крейсерских режимах полета с поддержанием заданного диаметра критического сечения реактивного сопла, предварительно проводят испытания с различным диаметром критического сечения реактивного сопла, при каждом диаметре создают на входе в двигатель и на выходе из двигателя давление и температуру воздуха, соответствующие условиям крейсерских полетов и условиям режима максимальной дальности, определяют диаметр критического сечения реактивного сопла, соответствующий минимальному удельному расходу топлива на выбранном режиме полета, затем по сигналу с борта самолета при крейсерских полетах и полетах на максимальную дальность изменяют диаметр критического сечения реактивного сопла на диаметр, обеспечивающий минимальный удельный расход топлива.



 

Похожие патенты:

Изобретение относится к области эксплуатации газотурбинных двигателей, в частности к двигателям, применяемым в качестве привода газоперекачивающих агрегатов и энергоустановок.

Двухканальная система топливопитания и регулирования ГТД относится к области авиационного двигателестроения и предназначена для автоматического управления ГТД на всех режимах работы двигателя.

Изобретение относится к способам контроля тяги турбореактивного двигателя. Способ содержит этапы получения первого значения тяги, соответствующего первой рабочей точке компрессора на верхнем ограничении, причем это верхнее ограничение учитывает недооценку расхода топлива; управления турбореактивным двигателем для достижения первого значения тяги; мониторинга турбореактивного двигателя для обнаружения срыва работы компрессора; в случае необходимости: получения второго значения тяги, соответствующего второй рабочей точке, гарантирующей заранее определенный запас относительно верхнего ограничения для защиты турбореактивного двигателя от срыва работы компрессора, и управления турбореактивным двигателем для достижения второго значения.

Двухканальная система регулирования подачи топлива в газотурбинный двигатель относится к области авиационного двигателестроения и предназначена для автоматического управления ГТД на всех режимах работы двигателя.

Изобретение относится к области газотурбинного двигателестроения, а именно к камерам сгорания газотурбинных двигателей, преимущественно малоэмиссионным камерам сгорания, и позволяет повысить топливную эффективность полноты сгорания топлива газотурбинного двигателя, на таких режимах работы камеры сгорания, когда вследствие неблагоприятного сочетания параметров топлива в зоне горения за частью или всеми горелками, полнота сгорания топлива снижается.

Способ в соответствии с изобретением содержит в фазе (Е0) запуска газотурбинного двигателя: - этап (Е10) генерирования в режиме разомкнутого цикла команды (WF_OL) расхода топлива на основании по меньшей мере одного заранее установленного правила; и - этап (Е20-Е30) отслеживания в режиме замкнутого цикла по меньшей мере одного рабочего параметра газотурбинного двигателя, выбираемого из следующих параметров: - степень (dN2/dt) ускорения компрессора газотурбинного двигателя, и - температура (EGT) на выходе турбины газотурбинного двигателя, причем этот этап отслеживания включает в себя поддержание (Е30) рабочего параметра в определенном диапазоне значений при помощи по меньшей мере одной корректирующей схемы (R1, R2, R3), связанной с этим параметром и выполненной с возможностью выдачи сигнала коррекции команды расхода топлива, генерируемой в режиме разомкнутого цикла.

Группа изобретений относится к дозирующему топливному устройству для топливного инжектора турбоустройства летательного аппарата, а также к камере сгорания турбоустройста летательного аппарата и к турбоустройству.

Изобретение относится к области турбинных двигателей, и предпочтительно применимо к области авиации. Способ регулирования порогового значения расхода топлива для использования в разомкнутом контуре для регулирования турбореактивного двигателя, приводящего в движение летательный аппарат, включает этап получения первой оценки расхода топлива, впрыскиваемого в камеру сгорания турбинного двигателя; этап получения второй оценки расхода топлива, причем вторая оценка является более точной, чем первая оценка, для, по меньшей мере, одного диапазона значений расхода топлива, и этап регулирования порогового значения расхода топлива с помощью разности, вычисленной между первой оценкой и второй оценкой.

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в электронных системах автоматического управления (САУ) и регулирования подачей топлива на запусках газотурбинных двигателей.

Система топливопитания газотурбинного двигателя относится к области двигателестроения, в частности к системам топливопитания газотурбинных двигателей летательного аппарата.
Наверх