Способ испытаний авиационного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных турбореактивных двигателей (ТРД). Способ испытаний авиационного ТРД осуществляется с подогревом и наддувом воздуха на входе в двигатель. Согласно изобретению для двигателя, содержащего систему наддува опор, предварительно создают математическую модель, корректируют ее по результатам испытаний репрезентативного количества от трех до пяти двигателей, по математической модели определяют перепад давления на масляных уплотнениях в опорах двигателя при заданных условиях полета, а при испытаниях с подогревом и наддувом воздуха на входе в двигатель обеспечивают дополнительную подачу или эвакуацию воздуха из предмасляных полостей опор двигателя для обеспечения перепада давлений на масляных уплотнениях в опорах двигателя, соответствующих имитируемым полетным условиям. Предложенный способ позволяет обеспечить штатную работу системы наддува опор, предотвратить выброс масла в проточную часть изделия и обеспечить расход масла, соответствующий имитируемым полетным условиям. 2 табл.

 

Изобретение относится к области авиадвигателестроения, а именно, к способам испытаний авиационных турбореактивных двигателей (ТРД).

Известен способ испытаний авиационного ТРД с подогревом и наддувом воздуха на входе (см. Скубачевский "Испытания воздушно-реактивных двигателей", издательство "Машиностроение", Москва, 1972, с. 19-20).

Данный способ не является оптимальным вследствие того, что не обеспечивает оптимальной работы системы наддува опор для заданной высоты и скорости полета из-за отсутствия имитации параметров окружающей среды на срезе сопла и вокруг двигателя. Это приводит к нештатной работе системы наддува опор, в частности, неоптимальному перепаду давлений на уплотнениях в опорах двигателя, что приводит к выбросу масла через уплотнения в проточную часть двигателя и повышенному расходу масла в процессе испытаний.

Техническим результатом, достигаемым при использовании настоящего изобретения, является обеспечение штатной работы системы наддува опор двигателя при испытаниях с наддувом и подогревом воздуха на входе в двигатель в соответствии с имитируемыми условиями полета, а также повышение достоверности результатов испытаний путем обеспечения перепада давления на уплотнениях в опорах двигателя и расхода масла, соответствующих имитируемым полетным условиям.

Указанный технический результат достигается тем, что в известном способе испытаний авиационного ТРД с подогревом и наддувом воздуха на входе в двигатель, согласно изобретению, для двигателя, содержащего систему наддува опор, предварительно создают математическую модель, корректируют ее по результатам испытаний репрезентативного количества от трех до пяти двигателей, по математической модели определяют перепад давления на масляных уплотнениях в опорах двигателя при заданных условиях полета, а при испытаниях с подогревом и наддувом воздуха на входе в двигатель обеспечивают дополнительную подачу или эвакуацию воздуха из предмасляных полостей опор двигателя для обеспечения перепада давлений на масляных уплотнениях в опорах двигателя, соответствующих имитируемым полетным условиям.

Сущность изобретения заключается в следующем. При проведении испытаний двигателя, содержащего систему наддува опор, с наддувом и подогревом воздуха на входе в двигатель, отсутствует имитация параметров окружающей среды на выходе из двигателя (вокруг двигателя и на срезе сопла), что приводит к нештатной работе системы наддува опор (неоптимальному перепаду давлений на масляных уплотнениях в опорах двигателя). Это приводит к выбросу масла через масляные уплотнения в проточную часть двигателя, что влечет за собой повышенный расход масла в процессе испытаний.

При испытаниях двигателя с подогревом и наддувом воздуха на входе в двигатель обеспечивают дополнительную подачу или эвакуацию воздуха из предмасляных полостей опор двигателя для обеспечения перепада давлений на масляных уплотнениях в опорах двигателя, соответствующих имитируемым полетным условиям, что позволяет обеспечить штатную работу системы наддува опор и расход масла.

Пример.

Испытаниям подвергают репрезентативную группу из трех-пяти ТРД. При этом используют предварительно созданную математическую модель двигателя. Испытания проводят в термобарокамере с полной имитацией полетных условий при высоте Т=5 км и числе Маха М=1 на максимальном режиме работы двигателя.

По результатам замеров и их статического обобщения на максимальном режиме работы двигателя при полной имитации полетных условий при высоте Н=5 км и числе Маха М=1 определяют давление в масляной и предмасляной полости компрессора РК1 и РК2, давление в масляной и предмасляной полости турбины PT1 и РТ2, и по ним определяют перепад на масляных уплотнениях компрессора и турбины ΔРК и ΔРТ. Результаты представлены в таблице 1.

При испытаниях другого двигателя с наддувом и подогревом воздуха на входе при давлении на входе в двигатель Рвх=1,04 кг/см2 и температуре воздуха на входе в двигатель tвx=30°C, соответствующих условиям на входе в двигатель при полете самолета на высоте Н=5 км и числе Маха М=1, определяют давление в масляной и предмасляной полости компрессора и турбины, и по ним определяют перепад на масляных уплотнениях (таблица 2).

Для достижения перепадов на масляных уплотнениях ΔРК=0,1 кг/см2 и ΔРТ=0,2 кг/см2, соответствующих имитируемым полетных условиям при высоте Н=5 км и числе Маха М=1, обеспечивают эвакуацию воздуха из предмасляной полости компрессора до достижения давления в предмасляной полости PК1=3,0 кг/см2, и наддув воздуха в предмасляную полость турбины до достижения давления в предмасляной полости PT1=4,0 кг/см2.

Предложенный способ позволяет обеспечить штатную работу системы наддува опор, предотвратить выброс масла в проточную часть изделия и обеспечить расход масла, соответствующий имитируемым полетным условиям.

Способ испытаний авиационного турбореактивного двигателя с подогревом и наддувом воздуха на входе в двигатель, отличающийся тем, что для двигателя, содержащего систему наддува опор, предварительно создают математическую модель, корректируют ее по результатам испытаний репрезентативного количества от трех до пяти двигателей, по математической модели определяют перепад давления на масляных уплотнениях в опорах двигателя при заданных условиях полета, а при испытаниях с подогревом и наддувом воздуха на входе в двигатель обеспечивают дополнительную подачу или эвакуацию воздуха из предмасляных полостей опор двигателя для обеспечения перепада давлений на масляных уплотнениях в опорах двигателя, соответствующих имитируемым полетным условиям.



 

Похожие патенты:

Предлагаемое изобретение относится к стендам для испытаний осевых компрессоров низкого давления двух-(много)контурного газотурбинного двигателя и может быть использовано при изучении характеристик компрессоров низкого давления, а также их параметрической доводки в процессе выполнения работ по разработке новых газотурбинных двигателей.

Изобретение относится к области контроля и диагностики системы впрыска бензина (СВБ) автомобильного двигателя внутреннего сгорания (ДВС). Технический результат заключается в обеспечении бортовой локализации внутренних утечек СВБ, а также повышении точности и сокращении времени диагностирования утечек СВБ.

Изобретение относится к технике диагностирования двигателей внутреннего сгорания и предназначено для определения технического состояние цилиндропоршневой группы двигателя.

Изобретение относится к способу определения фактического такта в цилиндре двигателя с поступательно движущимися поршнями. Способ определения фактического такта в цилиндре (113) двигателя (100) с поступательно движущимися поршнями, имеющего коленчатый вал (110) и распределительный вал (120), кинематически связанный с приводным валом (211) топливного насоса (210), который повышает давление топлива и подает его в топливопровод (230), без возможности своего независимого от этого приводного вала вращения относительно него, заключается в том, что топливным насосом (210) подают топливо в топливопровод (230) двигателя (100) с поступательно движущимися поршнями, откуда оно может впрыскиваться в цилиндр (113) двигателя (100) с поступательно движущимися поршнями, регистрируют характер (420) изменения давления топлива в топливопроводе (230), с помощью датчика (118), работающего в паре с задающим диском на коленчатом валу, регистрируют вращение коленчатого вала (110) и выдают характеризующий его угловое положение сигнал и на основании зарегистрированного характера (420) изменения давления топлива в топливопроводе (230) делают вывод о происходящем в топливном насосе (210) движении (421, 422, 423) подачи и на основании этого, а также на основании сигнала, характеризующего угловое положение коленчатого вала, делают вывод о фактическом такте в цилиндре (113) двигателя.

Изобретение относится к области техники испытаний газотурбинных двигателей, а именно к способам стендовых испытаний турбореактивных двухконтурных двигателей (ТРДД) с проверкой отсутствия автоколебаний рабочих лопаток вентилятора двигателя.

Изобретение относится к области техники испытаний газотурбинных двигателей, а именно к способам стендовых испытаний турбореактивных двухконтурных двигателей (ТРДД) с проверкой отсутствия автоколебаний рабочих лопаток вентилятора двигателя.
Изобретение относится к методикам оценки остаточного ресурса объектов аттракционной техники в условиях эксплуатации. Сущность: осуществляют измерение эксплуатационных повреждений на элементах конструкции аттракциона, определяющих ресурс путем измерения размеров эксплуатационных повреждений, таких как коррозионное поражение, механическое повреждение, износ или усталостные трещины с применением неразрушающих методов контроля, установление допустимости изменения их усталостной прочности посредством вычисления усталостной прочности конструкции на основании результатов измерений для каждого элемента конструкции аттракциона с обнаруженным повреждением, с определением максимальных, возникающих от воздействия расчетных эксплуатационных нагрузок, напряжений с учетом влияния эксплуатационного повреждения, присвоение уровня опасности повреждениям на основании выдвинутых критериев с формулированием критериев оценки элемента конструкции с повреждением, присвоением числового уровня опасности повреждениям, составлением матрицы опасности повреждений для всех элементов конструкции, анализом матрицы опасности по принятым критериям, составлением вывода о возможности или невозможности проведения процедуры оценки остаточного ресурса и определение остаточного ресурса объекта аттракционной техники в условиях эксплуатации с учетом анализа отработанных часов оперативного времени работы аттракциона в пределах назначенного ресурса.

Предложен компрессограф и реализуемый посредством него способ динамической компрессографии, который включает воздушный накопитель. Это позволяет получить осциллограмму давления в цилиндре автомобильного бензинового ДВС, на основании которой рассчитать компрессию и динамику ее нарастания на каждом последующем такте сжатия, и путем сравнения их значений в разных цилиндрах между собой и с нормативными значениями определить технический диагноз цилиндров с высокой достоверностью.

Изобретение относится к технике отбора образцов проб воздуха, отбираемых от компрессора авиационных газотурбинных двигателей (ГТД). Устройство для отбора средней за полет пробы воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях содержит диффузор с одним внутренним соплом, ориентированным по направлению потока, отбираемого от компрессора газотурбинного двигателя воздуха, пробоотборник с встроенными концентраторами, тройник.

Изобретение относится к энергомашиностроению и может быть использовано в системах диагностики работающих на насыщенном паре или паре с фиксированным перегревом конденсационных турбин турбогенераторных установок при их эксплуатации или стендовых испытаниях.

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных турбореактивных двигателей. Способ испытаний авиационного ТРД осуществляется с подогревом и наддувом воздуха на входе в двигатель. Согласно изобретению для двигателя, содержащего систему наддува опор, предварительно создают математическую модель, корректируют ее по результатам испытаний репрезентативного количества от трех до пяти двигателей, по математической модели определяют перепад давления на масляных уплотнениях в опорах двигателя при заданных условиях полета, а при испытаниях с подогревом и наддувом воздуха на входе в двигатель обеспечивают дополнительную подачу или эвакуацию воздуха из предмасляных полостей опор двигателя для обеспечения перепада давлений на масляных уплотнениях в опорах двигателя, соответствующих имитируемым полетным условиям. Предложенный способ позволяет обеспечить штатную работу системы наддува опор, предотвратить выброс масла в проточную часть изделия и обеспечить расход масла, соответствующий имитируемым полетным условиям. 2 табл.

Наверх