Способ получения твердого электролита li7la3zr2o12, легированного алюминием

Изобретение относится к способам получения керамических твердых электролитов с высокой проводимостью по иону лития и может быть использовано в электротехнической промышленности, в частности, при изготовлении твердофазных литий-ионных аккумуляторов для питания портативной электроники. Смешивают взятые в стехиометрии порошки азотнокислого цирконила и азотнокислого лантана, а также взятый с 15-20% избытком порошок карбоната лития. При смешивании компонентов шихты добавляют порошок азотнокислого алюминия в количестве 0,6-0,7 вес.% в пересчете на алюминий. Шихту подвергают термической обработке при температуре 850-900°С в течение 2-4 часов с образованием порошкообразного прекурсора. Затем прессуют таблетки, которые спекают при температуре 1050-1150°С в течение 8-10 часов. Изобретение позволяет при пониженной энергоемкости и длительности синтезировать монофазный твердый электролит состава Li6.4La3Al0.2Zr2O12 со структурой граната кубической модификации с высокой (до 2,3⋅10-4 См/см) ионной проводимостью. 1 з.п. ф-лы, 3 пр.

 

Изобретение относится к способам получения керамических твердых электролитов с высокой проводимостью по иону лития и может быть использовано в электротехнической промышленности, в частности, при изготовлении твердофазных литий-ионных аккумуляторов для питания портативной электроники.

В последнее время значительный интерес среди неорганических литий-проводящих оксидов вызывают твердые электролиты со структурой граната на основе цирконата лития и лантана общей формулы Li7La3Zr2O12. Такие электролиты могут иметь тетрагональную и кубическую модификации, при этом ионная проводимость электролита с кубической модификацией примерно на два порядка выше, чем проводимость электролита с тетрагональной модификацией. Для стабилизации высокопроводящей кубической модификации обычно используют легирование электролита на основе цирконата лития и лантана оксидом алюминия. Высокая литий-ионная проводимость, химическая стабильность делают такое соединение перспективным для изготовления полностью твердофазных литий-ионных аккумуляторов.

Существуют различные способы синтеза соединения Li7La3Zr2O12: твердофазный, золь-гель, твердофазный с предварительной механической активацией, комбинированный твердофазно-жидкостной, метод совместного осаждения, метод сжигания, синтез из расплавленных солей в эвтектике и др. Наиболее широкое распространение получил метод высокотемпературного твердофазного спекания многокомпонентной шихты из исходных реагентов в виде тугоплавких оксидов лантана, циркония и солей лития. Однако при этом возникает проблема получения монофазного продукта при пониженной температуре и продолжительности синтеза с воспроизводимыми характеристиками, поскольку обеспечение монофазности требует многократного повторения операций спекания, измельчения, классификации порошкообразных промежуточных продуктов.

Известен способ получения твердого электролита Li7La3Zr2O12 со структурой граната (см. Е.А., Andreev O.L., Antonov B.D., Batalov N.N. Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate-nitrate methods // J. Power Sources. 2012. V. 201. p. 169-173), согласно которому в качестве исходных компонентов для твердофазного синтеза используют Li2CO3, La2O3 и ZrO2. Оксиды циркония и лантана предварительно высушивают при 1000°С до постоянного веса. Исходные вещества смешивают в стехиометрическом соотношении, за исключением Li2CO3, который берут с избытком 10 мас. %. После смешивания исходную смесь нагревают в платиновом тигле на воздухе. Синтез проводят ступенчато, повышая температуру от 900°С до 1250°С в течение 8 часов и выдерживая при конечной температуре спекания в течение 2 часов. По данным рентгенофазового анализа полученный монофазный твердый электролит Li7La3Zr2O12 имел структуру граната тетрагональной модификации. Ионная проводимость была измерена на таблетках плотностью 73% и составила 1,28⋅10-6 См/см при 20°С.

К недостаткам данного способа относится то, что он является энергоемким, так как монофазный твердый электролит получают при высокой температуре, а тетрагональная модификация синтезированного таким образом электролита не обеспечивает его хорошую ионную проводимость. Все это снижает технологичность способа.

Известен также принятый в качестве прототипа способ получения твердого электролита Li7La3Zr2O12, легированного алюминием, со структурой граната (см. пат. 9350047 США, МПК Н01М 10/0562, 10/052, С04В 35/00, 35/50 (2013.01), 2016), включающий две стадии спекания, при этом на первой стадии смешивают взятые в стехиометрии порошки гидроксида лантана La(OH)3 и оксида циркония ZrO2, а также взятого с избытком карбоната лития Li2CO3 с обеспечением молярного соотношения 3,85:3:2. Полученный порошок нагревают со скоростью 600°С/час до 900°С и выдерживают при этой температуре в течение 6 часов. Затем спеченный порошок измельчают в течение 30 минут в дробильной мельнице, нагревают со скоростью 600°С/час до 1125°С и выдерживают при этой температуре в течение 6 часов. Далее спеченный порошок повторно измельчают, добавляют соединение алюминия, преимущественно А12O3, в количестве 0,6-3,0 вес.%, перемешивают, прессуют в таблетки, нагревают со скоростью 60°С/час до температуры 1180°С и выдерживают при этой температуре в течение 36 часов для получения таблеток тестовых образцов с плотностью 77-84%. По данным рентгенофазового и химического анализов полученный твердый электролит Li7La3Zr2O12, легированный алюминием, является монофазным и имеет структуру граната кубической модификации. Ионная проводимость электролита не превышала 2,9⋅10-5 См/см.

Недостатком известного способа является то, что получение монофазного твердого электролита, легированного алюминием, связано со значительным числом операций и высокой длительностью обработки при высокой температуре. Получаемый твердый электролит имеет недостаточно высокую ионную проводимость. Все это снижает технологичность способа.

Настоящее изобретение направлено на повышение технологичности способа получения монофазного твердого электролита Li7La3Zr2O12, легированного алюминием, за счет снижения числа операций, энергоемкости и длительности способа при обеспечении высокой ионной проводимости электролита.

Технический результат достигается тем, что в способе получения твердого электролита Li7La3Zr2O12, легированного алюминием, со структурой граната, включающем смешивание взятых в стехиометрии порошков соединений лантана, циркония, а также взятого с избытком порошка карбоната лития, добавление порошка соединения алюминия, термическую обработку шихты с образованием порошкообразного прекурсора, прессование таблеток и их спекание, согласно изобретению, в качестве соединений циркония, лантана и алюминия используют азотнокислые цирконил, лантан и алюминий, при этом азотнокислый алюминий добавляют непосредственно при смешивании компонентов шихты, карбонат лития берут с избытком 15-20%, термическую обработку шихты ведут при температуре 850-900°С в течение 2-4 часов, а спекание таблеток осуществляют при температуре 1050-1150°С в течение 8-10 часов.

Достижению технического результата способствует также то, что азотнокислый алюминий добавляют в количестве 0,6-0,7 вес. % в пересчете на алюминий.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Использование в качестве соединений циркония, лантана и алюминия соответственно азотнокислых цирконила ZrО(NO3)2⋅2Н2O, лантана Lа(NO3)3⋅6Н2O и алюминия Al(NO3)3⋅9H2O обусловлено тем, что эти соединения являются низкоплавкими и разлагаются с образованием рентгено-аморфных оксидов с повышенной реакционной способностью, что интенсифицирует процесс взаимодействия компонентов шихты и способствует образованию целевого продукта при пониженных температурах.

Добавление азотнокислого алюминия непосредственно при смешивании компонентов шихты способствует равномерному распределению легирующей добавки в составе расплава, образующегося при термической обработке шихты, обеспечивает стабилизацию кубической модификации твердого электролита и, соответственно, высокую ионную проводимость.

Использование карбоната лития Li2CO3 с избытком 15-20% позволяет компенсировать потери лития при термической обработке шихты и способствует образованию монофазного продукта. Использование карбоната лития с избытком менее 15% не обеспечивает получение монофазного продукта, на рентгенограмме присутствует примесная фаза La2Zr2O7. При использовании карбоната лития с избытком более 20% в продукте образуется примесная фаза Li2CO3.

Термическая обработка шихты при температуре 850-900°С в течение 2-4 часов обеспечивает получение порошкообразного монофазного твердого электролита со структурой граната кубической модификации при пониженной энергоемкости и длительности обработки. Обработка шихты при температуре ниже 850°С в течение менее 2 часов не обеспечивает полноту протекания синтеза с получением монофазного конечного продукта. Обработка шихты при температуре выше 900°С в течение более 4 часов ведет к агломерированию порошка и избыточным энергозатратам без улучшения характеристик продукта.

Спекание таблеток при температуре 1050-1150°С в течение 8-10 часов создает непрерывный и эффективный контакт между зернами и обеспечивает получение керамического монофазного твердого электролита со структурой граната. При этом увеличивается плотность таблеток и повышается значение ионной проводимости. Спекание таблеток при температуре ниже 1050°С в течение менее 8 часов не позволяет получить керамику с плотностью, достаточной для обеспечения высокой ионной проводимости электролита. Спекание таблеток при температуре выше 1150°С в течение более 10 часов технологически неоправданно, поскольку вызывает неконтролируемое изменение состава электролита вследствие потерь лития.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в повышении технологичности способа получения монофазного твердого электролита за счет снижения числа операций, энергоемкости и длительности способа при обеспечении высокой ионной проводимости электролита.

В частных случаях осуществления изобретения предпочтительны следующие конкретные операции и режимные параметры.

Добавление азотнокислого алюминия в количестве 0,6-0,7 вес. % в пересчете на алюминий обеспечивает стабилизацию кубической модификации твердого электролита и, соответственно, повышает его ионную проводимость. Введение азотнокислого алюминия в количестве менее 0,6 вес. % в пересчете на Аl недостаточно для полноты перехода тетрагональной модификации в кубическую, а введение в количестве более 0,7 вес. % является избыточным.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме, повысить его технологичность.

Сущность и преимущества предлагаемого изобретения могут быть пояснены следующими Примерами конкретного выполнения изобретения.

Пример 1. Осуществляют получение твердого электролита Li7La3Zr2O12, легированного алюминием. В качестве исходных веществ используют двуводный азотнокислый цирконил ZrO(NO3)2⋅2H2O марки «чда», шестиводный азотнокислый лантан La(NO3)3⋅6H2O марки «ч», азотнокислый алюминий Al(NO3)3⋅9H2O марки «чда» и карбонат лития Li2CO3 марки «ч». Смешивают в стехиометрическом соотношении порошки ZrO(NO3)2⋅2H2O в количестве 1,907 г и La(NO3)3⋅6H2O в количестве 4,632 г, а также взятый с избытком 20% порошок Li2CO3 в количестве 1,011 г. При смешивании компонентов шихты добавляют 0,250 г порошка Al(NO3)3⋅9H2O, что соответствует 0,6 вес. % в пересчете на Аl. Шихту помещают в корундовый тигель и нагревают в муфельной печи МИМП-3П с программным управлением со скоростью 600°С/час до 900°С с изотермической выдержкой в течение 3 часов. В результате нагрева происходит плавление шихты, разложение нитратов до оксидов и последующее взаимодействие оксидов с получением порошкообразного твердого электролита в количестве 2,967 г. Выход продукта составил 98,9%.

Синтезированный твердый электролит был идентифицирован методом рентгенофазового анализа. По данным РФА электролит является монофазным, со структурой граната кубической модификации, не содержит исходных непрореагировавших продуктов и примесных фаз: La2O3, ZrO2, La2Zr2O7. Непосредственно после спекания при 900°С на ИК-спектре твердого электролита отсутствовали полосы поглощения в области 1475-1430 см-1, характерные для карбонат-иона СО32-. Содержание лития, циркония, лантана и алюминия определяли методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой. По данным атомно-эмиссионной спектрометрии твердый электролит содержит, мас. %: Li2O 11,2, La2O3 57,9, ZrO2 28,8, Аl2O3 1,9, что соответствует химической формуле Li6.4La3Al0.2Zr2O12. Средний размер частиц порошка твердого электролита, рассчитанный по величине удельной поверхности, составил 1,4 мкм.

Далее из полученного монофазного порошка прессуют цилиндрическую таблетку диаметром 12 мм, высотой 3 мм и спекают под маточным порошком при температуре 1100°С с изотермической выдержкой в течение 10 часов. Причем скорость нагрева от комнатной температуры до 1000°С составляет 600°С/час, а от 1000°С до 1100°С - 120°С/час. Затем измеряют плотность и ионную проводимость таблетки твердого электролита методом спектроскопии электрохимического импеданса в ячейке с графитовыми электродами в интервале частот от 10 Гц до 2⋅106 Гц с амплитудой переменного сигнала 0,1 В. Ионная проводимость твердого электролита, измеренная на таблетке плотностью 76%, при температуре 20°С составила 2,1⋅10-4 См/см.

Пример 2. Осуществляют получение легированного алюминием твердого электролита Li7La3Zr2O12 аналогично Примеру 1. Смешивают в стехиометрическом соотношении порошки ZrO(NO3)2⋅2H2O в количестве 1,907 г и La(NO3)3⋅6H2O в количестве 4,632 г, а также взятый с избытком 15% порошок Li2CO3 в количестве 0,969 г. При смешивании компонентов шихты добавляют 0,292 г порошка Al(NO3)3⋅9H2O, что соответствует 0,7 вес. % в пересчете на Аl. Шихту нагревают в муфельной печи со скоростью 600°С/час до 850°С с изотермической выдержкой в течение 4 часов. В результате нагрева происходит плавление шихты, разложение нитратов до оксидов и последующее взаимодействие оксидов с получением порошкообразного твердого электролита в количестве 2,976 г. Выход продукта составил 99,2%.

По данным РФА электролит является монофазным, со структурой граната кубической модификации, не содержит исходных непрореагировавших продуктов и примесных фаз: La2O3, ZrO2, La2Zr2O7. Методом ИК-спектроскопии подтверждено отсутствие групп СO32-. По данным атомно-эмиссионной спектрометрии с индуктивно связанной плазмой электролит содержит, мас. %: Li2O 11,1, La2O3 57,7, ZrO2 28,6, Аl2О3 2,1, что соответствует химической формуле Li6.4La3Al0.2Zr2O12. Средний размер частиц порошка твердого электролита, рассчитанный по величине удельной поверхности, составил 1,2 мкм.

Из полученного монофазного порошка прессуют цилиндрическую таблетку диаметром 12 мм, высотой 2 мм и спекают под маточным порошком при температуре 1150°С с изотермической выдержкой в течение 8 часов. Причем скорость нагрева от комнатной температуры до 900°С составляет 600°С/час, а от 900°С до 1150°С - 60°С/час. Ионная проводимость твердого электролита, измеренная на спеченной таблетке плотностью 82%, при температуре 20°С составила 2,3⋅10-4 См/см.

Пример 3. Осуществляют получение легированного алюминием твердого электролита Li7La3Zr2O12 аналогично Примеру 1. Смешивают в стехиометрическом соотношении порошки ZrO(NO3)2⋅2H2O в количестве 3,814 г и La(NO3)3⋅6H2O в количестве 9,264 г, а также взятый с избытком 18% порошок Li2CO3 в количестве 1,988 г. При смешивании компонентов шихты добавляют 0,583 г порошка Al(NO3)3⋅9H2O, что соответствует 0,7 вес. % в пересчете на Аl. Шихту нагревают в муфельной печи со скоростью 600°С/час до 900°С с изотермической выдержкой в течение 2 часов. В результате нагрева происходит плавление шихты, разложение нитратов до оксидов и последующее взаимодействие оксидов с получением порошкообразного твердого электролита в количестве 5,982 г. Выход продукта составил 99,7%.

По данным РФА электролит является монофазным, со структурой граната кубической модификации, не содержит исходных непрореагировавших продуктов и примесных фаз: La2O3, ZrO2, La2Zr2O7. Методом ИК-спектроскопии подтверждено отсутствие групп СO32-. По данным атомно-эмиссионной спектрометрии с индуктивно связанной плазмой электролит содержит, мас. %: Li2O 11,0, La2O3 58,0, ZrO2 28,5, Аl2O3 2,2, что соответствует химической формуле Li6.4La3Al0.2Zr2O12. Средний размер частиц порошка твердого электролита, рассчитанный по величине удельной поверхности, составил 1,3 мкм.

Из полученного монофазного порошка прессуют цилиндрическую таблетку диаметром 12 мм, высотой 2 мм и спекают под маточным порошком при температуре 1050°С с изотермической выдержкой в течение 9 часов. Причем скорость нагрева от комнатной температуры до 900°С составляет 600°С/час, а от 900°С до 1050°С - 60°С/час. Ионная проводимость твердого электролита, измеренная на спеченной таблетке плотностью 73%, при температуре 20°С составила 2,0⋅10-4 См/см.

Из вышеприведенных Примеров осуществления изобретения следует, что заявляемый способ позволяет более технологичным путем по сравнению с прототипом синтезировать монофазный твердый электролит состава Li6.4La3Al0.2Zr2O12 со структурой граната кубической модификации с высокой (до 2,3⋅10-4 См/см) ионной проводимостью. Способ согласно изобретению использует низкоплавкие солевые компоненты, имеет пониженные энергоемкость и длительность. Способ относительно прост, воспроизводим и может быть реализован с использованием стандартного оборудования.

1. Способ получения твердого электролита Li7La3Zr2O12, легированного алюминием, со структурой граната, включающий смешивание взятых в стехиометрии порошков соединений лантана, циркония, а также взятого с избытком порошка карбоната лития, добавление порошка соединения алюминия, термическую обработку шихты с образованием порошкообразного прекурсора, прессование таблеток и их спекание, отличающийся тем, что в качестве соединений циркония, лантана и алюминия используют азотнокислые цирконил, лантан и алюминий, при этом азотнокислый алюминий добавляют непосредственно при смешивании компонентов шихты, карбонат лития берут с избытком 15-20%, термическую обработку шихты ведут при температуре 850-900°С в течение 2-4 часов, а спекание таблеток осуществляют при температуре 1050-1150°С в течение 8-10 часов.

2. Способ по п. 1, отличающийся тем, что азотнокислый алюминий добавляют в количестве 0,6-0,7 вес. % в пересчете на алюминий.



 

Похожие патенты:

Изобретение относится к раствору неводного электролита, вторичной батарее с неводным электролитом и способу изготовления вторичной батареи с неводным электролитом.

Изобретение относится к литий-ионной вторичной батарее и к способу ее изготовления. Способ изготовления литий-ионной вторичной батареи включает слой композиции положительного электрода, сформированной на токосъемнике положительного электрода с использованием водной композиции пасты положительного электрода, которая включает активный материал положительного электрода, включающий сложный оксид лития и марганца и водный растворитель, и дополнительно включает Li5FeO4 в качестве добавки.

Изобретение относится к области электротехники, а именно к сепаратору, включающему в себя выстроенные частицы для улучшенной удельной ионной проводимости, способу его получения, и может быть использовано при изготовлении перезаряжаемых литий-ионных аккумуляторов.

Изобретение относится к машиностроению. Система охлаждения батареи включает в себя: контур охлаждения, устройство передачи мощности, расположенное в контуре охлаждения, включающее в себя зубчатую передачу, трансмиссионное масло, обладающее электроизолирующими свойствами, используемое для смазки зубчатой передачи и циркулирующее в контуре охлаждения, батарею, расположенную в контуре охлаждения, содержащую модульный отсек, в котором размещается множество элементов батареи, насос, расположенный в контуре охлаждения, и радиатор, расположенный в контуре охлаждения, осуществляющий теплоотвод от трансмиссионного масла, протекающего в контуре охлаждения.

Изобретение относится к области электротехники, а именно к многослойной аккумуляторной батарее, в которой подавляется неравномерность сопротивления короткого замыкания среди множества аккумуляторных элементов.

Изобретение относится к области электротехники, а именно к пакетированному аккумулятору, включающему в себя по меньшей мере одну часть шунтирования тока короткого замыкания и электрические элементы, при этом часть шунтирования включает в себя первый и второй слои токоотвода и изолирующий слой, предоставленный между первым и вторым слоями токоотвода, причем все эти слои укладываются поверх друг друга; каждый элемент выработки мощности включает в себя слой катодного токоотвода, слой катодного материала, слой электролита, слой анодного материала и слой анодного токоотвода, причем все эти слои укладываются поверх друг друга; первый слой токоотвода электрически соединяется со слоем катодного токоотвода, а второй слой токоотвода - со слоем анодного токоотвода; электрические элементы электрически соединяются параллельно; и часть шунтирования рядом с электрическими элементами включает в себя PPTC-слой между первым слоем токоотвода и изолирующим слоем и/или между вторым слоем токоотвода и изолирующим слоем.

Изобретение относится к области электротехники, а именно к способу эксплуатации литий-ионной аккумуляторной батареи в автономной системе электропитания, и может быть использовано в автономных системах электропитания искусственного спутника Земли (ИСЗ).

Изобретение относится к области электротехники, а именно к биосовместимой микробатарее в гибкой биосовместимой оболочке. Электрохимическая микробатарея содержит компоненты электрохимического элемента и состоит из плоских анода и катода с токоотводами, расположенными в пределах заданного расстояния для обеспечения ионной проводимости между анодом и катодом, при этом гибкая оболочка окружает анод, катод и электролит, а указанные токоотводы проходят через указанную гибкую оболочку, также микробатарея имеет либо плоскую, либо дугообразную форму.

Изобретение относится к способам изготовления биосовместимых элементов питания. Способ изготовления биосовместимых элементов питания включает получение первой пленки подложки, формирование полости, содержащей активные химические вещества катода, получение анодной пленки, содержащей анодные химические вещества, осаждение сепаратора в биосовместимый элемент питания через полость в слое катодной прокладки, причем сепаратор содержит смесь полимеризуемого материала, смешанного с вкраплениями неполимеризуемого материала, погружение пленки подложки с осажденным сепаратором в растворитель, причем растворитель растворяет вкрапления неполимеризуемого материала и не растворяет полимер, при этом при растворении вкраплений неполимеризуемого материала создаются пустоты в сепараторе, помещение катодной суспензии в полость в слое катодной прокладки.

Изобретение относится к электротехнической промышленности и может быть использовано в герметичных аккумуляторах для осуществления сброса (стравливания) давления газообразной среды из литий-ионных аккумуляторов.
Изобретение относится к области производства материалов для электрофизического приборостроения, а именно к технологии получения полимерных композитов с высокой диэлектрической проницаемостью, и может быть использовано при создании различных приборов и устройств твердотельной электроники, в том числе конденсаторов, суперконденсаторов, оптоэлектронных преобразователей, топливных элементов и др.

Изобретение относится к области производства материалов для электрохимического и электрофизического приборостроения, а именно к технологии получения полимерных протонпроводящих композитов с высокой диэлектрической проницаемостью, и может быть использовано при создании различных электрохимических приборов и устройств, в том числе суперконденсаторов, электрохромных приборов и оптоэлектронных преобразователей, топливных элементов и др.
Настоящее изобретение относится к полимерным протонпроводящим композиционным материалам. Описан полимерный протонпроводящий композиционный материал, включающий полимерную линейную матрицу, представляющую собой водный 2-9% раствор поливинилового спирта, содержащий наночастицы серебра размером 20-100 нм в концентрации 40-100 мг/л и диспергированный в ней протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты и пластификатора в виде глицерина при следующем соотношении компонентов, мас.%: водный раствор поливинилового спирта 38-69, фосфорно-вольфрамовая кислота 19-50, глицерин остальное.
Изобретение относится к способу получения частиц твердого электролита Li1+xAlxTi2-x(PO4)3 (0,1≤x≤0,5), включающему смешивание первого раствора, содержащего азотную кислоту, воду, азотнокислый литий, азотнокислый алюминий, фосфорнокислый аммоний NH4H2PO4 или фосфорную кислоту, и второго раствора, содержащего соединение титана и растворитель, с образованием азотнокислого коллективного раствора, нагревание коллективного раствора с получением прекурсора и его прокалку.

Изобретение относится к способам получения твердого электролита с высокой ионной проводимостью при комнатной температуре и может быть использовано в электронной промышленности, в частности, при изготовлении миниатюрных суперконденсаторов высокой емкости - варисторов, которые находят различное применение, в том числе в качестве источника энергии кардиостимуляторов.

Изобретение относится к электролитическим конденсаторам. .

Изобретение относится к электролитическому конденсатору, содержащему слой способного к оксидированию металла, слой оксида этого металла, твердый электролит и контакты, причем в качестве твердого электролита используются политиофены с повторяющимися структурными единицами общей формулы (I) Также описан электропроводящий слой с удельной электропроводностью, по меньшей мере, 150 См/см, используемый, например, в качестве антистатического покрытия, прозрачного нагревательного элемента, твердого электролита электролитических конденсаторов, а также для металлизации сквозных отверстий печатных плат и т.п.

Группа изобретений относится к медицине. Контактная линза содержит: электроактивный компонент, выполненный с возможностью изменения фокусных характеристик контактной линзы; батарею, содержащую анодный токоотвод, катодный токоотвод, анод, электролит и катод, причем катод содержит электроосажденные катодные химические вещества, причем катод содержит электролитический диоксид марганца; и биосовместимый герметизирующий слой, причем биосовместимый герметизирующий слой герметизирует электроактивный компонент и батарею. Батарея для контактной линзы содержит: анодный токоотвод, причем анодный токоотвод представляет собой первую металлическую трубку, закрытую на первом конце; анод, причем анодное химическое вещество содержится внутри первой металлической трубки; электролит; катодный токоотвод, причем катодный токоотвод представляет собой проволоку; керамический концевой колпачок с первой уплотнительной поверхностью, которая герметично взаимодействует с первой металлической трубкой, и второй уплотнительной поверхностью, которая герметично взаимодействует с катодным токоотводом; катод, причем катодное химическое вещество электроосаждено на катодный токоотвод, причем катод содержит электролитический диоксид марганца; и уплотняющий материал, размещенный в зазоре между первой уплотнительной поверхностью и первой металлической трубкой. Способ изготовления батареи для контактной линзы, включающий: получение катодного токоотвода; придание шероховатости поверхности катодного токоотвода; помещение катодного токоотвода в химическую ванну, содержащую соль марганца; помещение гальванического электрода в химическую ванну; установление электрического потенциала на катодном токоотводе и гальваническом электроде, причем этот электрический потенциал вызывает электрохимическое осаждение диоксида марганца на катодный токоотвод; и сборку катодного токоотвода с электроосажденным диоксидом марганца вместе с анодом, анодным токоотводом и электролитом. Применение данной группы изобретений позволит улучшить обработку и конфигурацию катода для применения в биосовместимых элементах питания. 4 н. и 15 з.п. ф-лы, 12 ил.

Изобретение относится к способам получения керамических твердых электролитов с высокой проводимостью по иону лития и может быть использовано в электротехнической промышленности, в частности, при изготовлении твердофазных литий-ионных аккумуляторов для питания портативной электроники. Смешивают взятые в стехиометрии порошки азотнокислого цирконила и азотнокислого лантана, а также взятый с 15-20 избытком порошок карбоната лития. При смешивании компонентов шихты добавляют порошок азотнокислого алюминия в количестве 0,6-0,7 вес. в пересчете на алюминий. Шихту подвергают термической обработке при температуре 850-900°С в течение 2-4 часов с образованием порошкообразного прекурсора. Затем прессуют таблетки, которые спекают при температуре 1050-1150°С в течение 8-10 часов. Изобретение позволяет при пониженной энергоемкости и длительности синтезировать монофазный твердый электролит состава Li6.4La3Al0.2Zr2O12 со структурой граната кубической модификации с высокой ионной проводимостью. 1 з.п. ф-лы, 3 пр.

Наверх