Волоконный лазер для медицины

Изобретение относится к медицинской технике. Оптическая схема волоконного лазера для медицины состоит из глухого и выходного селективных зеркал, резонатора, источника подсветки, активного волокна и волоконно-оптического делителя излучения, через который лазер оптически связан с источником подсветки, резонатор выполнен волоконно-оптическим, образованным селективными зеркалами, выполненными в виде волоконных брегговских решеток, выходная из которых выполнена с коэффициентом отражения в интервале от 5 до 20%, лазерными диодами накачки, волоконно-оптическими объединителями накачки, соединенными с диодами накачки и активным волокном 4, волоконно-оптическим изолятором, расположенным в выходной части лазера, и волоконно-оптическим стриппером оболочки. 3 з.п. ф-лы, 4 ил.

 

Изобретение относится к приборам для генерации с использованием стимулированного излучения когерентных электромагнитных волн и может быть использовано в квантовых устройствах для генерирования, стабилизации, модуляции, демодуляции или преобразования частоты, использующие стимулированное излучение в инфракрасной области спектра, а именно к волоконным лазерам для медицины.

Волоконные лазеры стали популярными в медицине для малоинвазивного лечения ряда серьезных заболеваний. Наиболее востребованными здесь являются тулиевые волоконные лазеры, способные генерировать излучение с длиной волны в диапазоне 1900-2000 нм, которое хорошо поглощается в воде и крови.

При разработке волоконных лазеров для медицины необходимо учитывать, что лазер должен обладать минимально возможными массо-габаритными параметрами высокой эффективностью и высокой надежностью.

Наиболее близким по технической сущности к изобретению и выбранным в качестве прототипа устройства является техническое решение, описанное в патенте РФ на изобретение №2 045 298, опубл. 10.01.2012 г., МПК A61N-5/06, А61В-17/36, под названием «Медицинское лазерное устройство», содержащее глухое и выходное селективные зеркала резонатора, измеритель мощности излучения, источник подсветки, блок управления и выпрямитель,

К недостаткам этого устройства следует отнести:

- использование твердотельного лазера существенно увеличивает массо-габаритные характеристики лазера и его стоимость;

- твердотельные лазеры имеют КПД в несколько раз меньший чем в волоконном;

- излучение твердотельного лазера при вводе в волокно может претерпевать потери до 50%.

Задачей настоящего изобретения является улучшение эксплуатационных возможностей с уменьшением массогабаритных характеристик и улучшением качественных характеристик, а именно увеличение выходной мощности и эффективности лазера.

Технический результат, заключается в том, что существенно повышена эффективность лазера за счет эффекта кроссрелаксации, длина волны оптимальна для работы с биологическими тканями, обеспечена возможность использования только конвективного охлаждения в широком диапазоне температур, что снижает массо-габаритные характеристики и повышает удобство эксплуатации, предотвращается эффект самофильтрации.

Это достигается тем, что волоконный лазер для медицины, содержащий глухое и выходное селективные зеркала, резонатор, измеритель мощности излучения, источник подсветки, блок управления и выпрямитель, согласно изобретению, снабжен активным волокном и волоконно-оптическим делителем излучения, через который оптически связан с источником подсветки, резонатор выполнен волоконно-оптическим, образованным селективными зеркалами, выполненными в виде волоконных брегговских решеток, выходная из которых выполнена с коэффициентом отражения в интервале от 5 до 20%, лазерными диодами накачки, волоконно-оптическими объединителями накачки, соединенными с диодами накачки и активным волокном, волоконно-оптическим изолятором, расположенным в выходной части лазера, и волоконно-оптическим стриппером оболочки.

Кроме того, в волоконном лазере для медицины по п. 1, активное волокно выполнено с концентрацией ионов Tm3+не менее 3% вес.

Кроме того, в волоконном лазере для медицины по п. 1, лазерные диоды накачки выполнены с длиной волны в диапазоне 785-795 нм.

Кроме того, в волоконном лазере для медицины по п. 1, активное волокно резонатора выполнено с длиной волны генерации в интервале от 1900 до 2000 нм.

Наличие в заявляемом изобретении признаков, отличающих его от прототипа, позволяет считать его соответствующим условию «новизна».

Новые признаки способа (он снабжен активным волокном и волоконно-оптическим делителем излучения, через который оптически связан с источником подсветки, резонатор выполнен волоконно-оптическим, образованным селективными зеркалами, выполненными в виде волоконных брегговских решеток, выходная из которых выполнена с коэффициентом отражения в интервале от 5 до 20%, лазерными диодами накачки, волоконно-оптическими объединителями накачки, соединенными с диодами накачки и активным волокном, волоконно-оптическим изолятором, расположенным в выходной части лазера, и волоконно-оптическим стриппером оболочки), не выявлены в технических решениях аналогичного назначения. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

Предложенное техническое решение проиллюстрировано на следующих чертежах:

на фиг. 1 представлена оптическая схема лазера;

на фиг. 2 представлена энергетическая диаграмма уровней ионов тулия;

на фиг. 3 представлен спектр поглощения тулиевого волокна в области 785-795 нм;

на фиг. 4 представлена зависимость нормированной эффективности тулиевого лазера от коэффициента отражения выходного зеркала.

На чертежах введены следующие обозначения:

1 - лазерный диод накачки;

2 -глухое селективное зеркало;

3 - объединитель накачки;

4 - активное волокно;

5 - объединитель накачки;

6 - выходное селективное зеркало;

7 - источник подсветки;

8 - делитель излучения;

9 - стриппер оболочки;

10 - изолятор.

Оптическая схема волоконного лазера для медицины состоит из (фиг. 1) глухого 2 и выходного 6 селективных зеркал, резонатора, источника подсветки 7, активного волокна 4 и волоконно-оптического делителя излучения 8, через который оптически связан с источником подсветки 7, резонатор выполнен волоконно-оптическим, образованным селективными зеркалами 2, 6, выполненными в виде волоконных брегговских решеток, выходная из которых выполнена с коэффициентом отражения в интервале от 5 до 20%, лазерными диодами накачки 1, волоконно-оптическими объединителями накачки 3, 5, соединенными с диодами накачки и активным волокном 4, волоконно-оптическим изолятором 10, расположенным в выходной части лазера, и волоконно-оптическим стриппером оболочки 9.

Устройство работает следующим образом.

Излучение диодов накачки 1 возбуждает ионы, находящиеся в состоянии 3Н6 (фиг. 2), и инициирует их переход на энергетические уровни 3F4, 3Н5, и 3Н4 со скоростью накачки W01, W02 и W03, соответственно. В устройстве используется накачка в диапазоне 785-795 нм, возбужденные ионы будут спонтанно переходить на нижние уровни со скоростями А. С уровня 3Н5 ионы безызлучательно переходят на уровень 3F4.

Лазерный переход расположен между уровнями 3Н6 и 3F4. Поэтому можно считать, что волоконный лазер для медицины работает по трехуровневой схеме, и необходима мощная накачка, чтобы создать инверсию населенностей. Учитывая значительный квантовый дефект (примерно 58%), КПД преобразования «свет в свет» не может превышать 42% (без учета других потерь). Известно, что с повышением концентрации ионов тулия эффективность волоконного лазера для медицины повышается и связана такая зависимость с эффектом кроссрелаксации. Кроссрелаксация заключается в том, что один фотон может переместить на лазерный уровень сразу два иона. На фиг. 2 этот процесс обозначен как CR. Использование активного волокна 4 с концентрацией ионов тулия (Tm3+) более 3% позволяет достичь эффективности «свет в свет» более 60%.

Экспериментальные исследования спектра поглощения ионов тулия в диапазоне 785-795 нм (фиг. 3) показали, что максимум поглощения соответсвует длине волны 788 нм. Поэтому использование диодов накачки 1 с длиной волны 786 нм при температуре 25°С позволяет использовать пассивное охлаждение, т.к. дрейф длины волны диодов накачки 1 составляет 0.3 нм/К. Таким образом, спектр излучения диодов накачки 1 соответствует спектру поглощения ионов тулия в активном волокне 4 и при температуре 40°С. В предлагаемом волоконном лазере для медицины активное волокно выполнено с длиной волны генерации в интервале 1900-2000 нм, которое хорошо поглощается в воде и крови.

Выше сказанное позволяет существенно снизить массогабаритные характеристики волоконного лазера для медицины при температуре до 40°С, что идеально подходит для использования в медицинских учреждениях.

Оптимальный коэффициент отражения выходного зеркала (фиг. 4) лежит в диапазоне от 5 до 20%. Нижняя граница 5% обусловлена созданием обратной связи в резонаторе от торца волокна посредством френелевского отражения (4.6%), вследствие чего лазер может генерировать излучение на благоприятной ему длине волны в области 1970 нм. Верхняя граница обусловлена спадом эффективности.

Заявляемое изобретение позволило снизить массогабаритные характеристики волоконного лазера для медицины и достичь КПД лазера 15%.

Для заявленного изобретения в том виде, как оно охарактеризовано в формуле изобретения, экспериментально подтверждена работоспособность волоконного лазера для медицины и способность достижения указанного технического результата. Следовательно, заявленное изобретение соответствует условию «промышленная применимость».

1. Волоконный лазер для медицины, содержащий глухое и выходное селективные зеркала, резонатор, измеритель мощности излучения, источник подсветки, блок управления и выпрямитель, отличающийся тем, что он снабжен активным волокном и волоконно-оптическим делителем излучения, через который оптически связан с источником подсветки, лазерными диодами накачки, волоконно-оптическими объединителями накачки, соединенными с диодами накачки и активным волокном, волоконно-оптическим изолятором, расположенным в выходной части лазера, и волоконно-оптическим стриппером оболочки, при этом резонатор выполнен волоконно-оптическим, образованным селективными зеркалами в виде волоконных брегговских решеток, выходная из которых выполнена с коэффициентом отражения в интервале от 5 до 20%.

2. Волоконный лазер для медицины по п. 1, отличающийся тем, что активное волокно выполнено с концентрацией ионов Tm3+ не менее 3 вес.%.

3. Волоконный лазер для медицины по п. 1, отличающийся тем, что лазерные диоды накачки выполнены с длиной волны в диапазоне 785-795 нм.

4. Волоконный лазер для медицины по п. 1, отличающийся тем, что активное волокно резонатора выполнено с длиной волны генерации в интервале от 1900 до 2000 нм.



 

Похожие патенты:

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для лечения рака лёгкого. Для этого осуществляют эндоскопическую фотодинамическую терапию (ФДТ).

Группа изобретений относится к медицине, а именно к стоматологии, и может быть использовано для извлечения отломка ручного эндодонтического инструмента из корневого канала зуба.

Изобретение относится к медицине, а именно к стоматологии и дерматологии, и может быть использовано для лечения красного плоского лишая слизистой оболочки рта. Для этого вводят раствор фотодитазина, приготовленного из расчета 1,4 мг/кг массы тела пациента и растворенного в 200 мл 0,9% раствора натрия хлорида, который вводится внутривенным капельным путем в течение 30 минут в затемненном помещении, затем через 2 часа после введения фотосенсибилизатора проводят сеанс лазерного облучения патологически измененных тканей слизистой оболочки рта лазерным медицинским аппаратом с длиной волны 661-668 нм, мощностью 350-400 мВт в течение 10-15 минут, при этом курс составляет 2-3 процедуры с интервалом от 4 до 7 дней.

Изобретение относится к медицинской технике. Визуальный фракционный лазерный инструмент содержит позиционирующую канюлю, представляющую собой полую трубку с отверстиями на обоих концах для локализации места повреждения и определения пути лазера; компонент устройства сведения лучей, представляющий собой полую трубку с отверстиями на обоих концах, причем сбоку компонента устройства сведения лучей выполнено боковое отверстие, при этом один конец компонента устройства сведения лучей соединен с одним концом позиционирующей канюли; камеру, соединенную с компонентом устройства сведения лучей посредством бокового отверстия, для формирования изображения места повреждения; компонент лазерного сканирования, соединенный с другим концом компонента устройства сведения лучей для генерации лазерного луча, используемого для сканирования места повреждения в соответствии с изображением места повреждения; и систему управления, соединенную соответственно с компонентом лазерного сканирования и с камерой.

Изобретение относится к экспериментальной медицине и онкологии и может быть использовано для фотодинамической терапии злокачественных новообразований в эксперименте.
Изобретение относится к медицине, а именно к урологии, и может быть использовано для лечения болезни Пейрони, осложненной эректильной дисфункцией. Проводят ударно-волновую терапию аппаратом Dornier Aries.

Изобретение относится к медицине, а именно к эндокринологии, и может быть использовано для лечения сахарного диабета. Воздействуют лазерным излучением на проекцию поджелудочной железы.

Изобретение относится к фармацевтической промышленности, а именно к средству для лечения гнойных ран методом антимикробной фотодинамической терапии. Средство для лечения гнойных ран методом антимикробной фотодинамической терапии представляет собой лиофилизат следующего состава: холосенс 10 мг, D–манит 40-60 мг.
Изобретение относится к медицине, а именно к стоматологии. Способ лечения альвеолита лунки зуба заключается в проведении местного лечения, сочетанного с физиотерапевтическими процедурами, при этом в предварительно обработанную лунку зуба вводят мазь, состоящую из смеси, содержащей 2 части 2% спиртового раствора грамицидина, 1 часть раствора преднизолона 30 мг/мл, 3 части 10% масляного раствора бензокаина, в качестве основы используют смесь ланолина безводного - 220 частей и масла какао - 442 части, а в качестве физиотерапевтического воздействия используют местное применение низковолнового лазера контактной стабильной методикой с вестибулярной стороны лунки зуба, при этом плотность мощности излучения составляет 60 мВт/см3, удельная доза составляет 0,55 Дж/см3, длительность экспозиции составляет 5 минут ежедневно в течение 5 дней.

Изобретение относится к медицине, а именно к стоматологии и парондонтологии и может быть использовано для лечения пародонтита. Проводят профессиональную гигиену полости рта пациента, снятие зубных отложений.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для лечения прогрессирующих кератэктазий. Для этого в течение 30 минут осуществляют насыщение стромы роговицы водным раствором, содержащим рибофлавин.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для лечения рака лёгкого. Для этого осуществляют эндоскопическую фотодинамическую терапию (ФДТ).

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для лечения рака лёгкого. Для этого осуществляют эндоскопическую фотодинамическую терапию (ФДТ).

Группа изобретений относится к медицине, а именно к стоматологии, и может быть использовано для извлечения отломка ручного эндодонтического инструмента из корневого канала зуба.
Изобретение относится к медицине, стоматологии, к лечению воспалительных заболеваний пародонта при окклюзионных нарушениях зубных рядов. Проводят комплексные процедуры, осуществляют лазерное воздействие путем перемещения рабочего наконечника лазерного излучения в пародонтальных карманах.

Изобретение относится к медицине, а именно к стоматологии и дерматологии, и может быть использовано для лечения красного плоского лишая слизистой оболочки рта. Для этого вводят раствор фотодитазина, приготовленного из расчета 1,4 мг/кг массы тела пациента и растворенного в 200 мл 0,9% раствора натрия хлорида, который вводится внутривенным капельным путем в течение 30 минут в затемненном помещении, затем через 2 часа после введения фотосенсибилизатора проводят сеанс лазерного облучения патологически измененных тканей слизистой оболочки рта лазерным медицинским аппаратом с длиной волны 661-668 нм, мощностью 350-400 мВт в течение 10-15 минут, при этом курс составляет 2-3 процедуры с интервалом от 4 до 7 дней.

Изобретение относится к медицине, а именно к стоматологии и дерматологии, и может быть использовано для лечения красного плоского лишая слизистой оболочки рта. Для этого вводят раствор фотодитазина, приготовленного из расчета 1,4 мг/кг массы тела пациента и растворенного в 200 мл 0,9% раствора натрия хлорида, который вводится внутривенным капельным путем в течение 30 минут в затемненном помещении, затем через 2 часа после введения фотосенсибилизатора проводят сеанс лазерного облучения патологически измененных тканей слизистой оболочки рта лазерным медицинским аппаратом с длиной волны 661-668 нм, мощностью 350-400 мВт в течение 10-15 минут, при этом курс составляет 2-3 процедуры с интервалом от 4 до 7 дней.

Изобретение относится к медицинской технике. Визуальный фракционный лазерный инструмент содержит позиционирующую канюлю, представляющую собой полую трубку с отверстиями на обоих концах для локализации места повреждения и определения пути лазера; компонент устройства сведения лучей, представляющий собой полую трубку с отверстиями на обоих концах, причем сбоку компонента устройства сведения лучей выполнено боковое отверстие, при этом один конец компонента устройства сведения лучей соединен с одним концом позиционирующей канюли; камеру, соединенную с компонентом устройства сведения лучей посредством бокового отверстия, для формирования изображения места повреждения; компонент лазерного сканирования, соединенный с другим концом компонента устройства сведения лучей для генерации лазерного луча, используемого для сканирования места повреждения в соответствии с изображением места повреждения; и систему управления, соединенную соответственно с компонентом лазерного сканирования и с камерой.

Изобретение относится к медицинской технике. Визуальный фракционный лазерный инструмент содержит позиционирующую канюлю, представляющую собой полую трубку с отверстиями на обоих концах для локализации места повреждения и определения пути лазера; компонент устройства сведения лучей, представляющий собой полую трубку с отверстиями на обоих концах, причем сбоку компонента устройства сведения лучей выполнено боковое отверстие, при этом один конец компонента устройства сведения лучей соединен с одним концом позиционирующей канюли; камеру, соединенную с компонентом устройства сведения лучей посредством бокового отверстия, для формирования изображения места повреждения; компонент лазерного сканирования, соединенный с другим концом компонента устройства сведения лучей для генерации лазерного луча, используемого для сканирования места повреждения в соответствии с изображением места повреждения; и систему управления, соединенную соответственно с компонентом лазерного сканирования и с камерой.
Изобретение относится к медицине, хирургии и может быть использовано для ведения периоперационного (предоперационного и послеоперационного) периода при симультанных операциях на органах брюшной полости.

Изобретение относится к медицинской технике. Оптическая схема волоконного лазера для медицины состоит из глухого и выходного селективных зеркал, резонатора, источника подсветки, активного волокна и волоконно-оптического делителя излучения, через который лазер оптически связан с источником подсветки, резонатор выполнен волоконно-оптическим, образованным селективными зеркалами, выполненными в виде волоконных брегговских решеток, выходная из которых выполнена с коэффициентом отражения в интервале от 5 до 20, лазерными диодами накачки, волоконно-оптическими объединителями накачки, соединенными с диодами накачки и активным волокном 4, волоконно-оптическим изолятором, расположенным в выходной части лазера, и волоконно-оптическим стриппером оболочки. 3 з.п. ф-лы, 4 ил.

Наверх