Способ регенерации молибденсодержащего катализатора гидроконверсии тяжелого углеводородного сырья

Изобретение относится к способу регенерации молибденсодержащего катализатора из выкипающего выше 500°С остатка гидроконверсии тяжелого углеводородного сырья. Способ включает в себя: выделение методом фильтрации из остатка гидроконверсии, выкипающего выше 500°С, который растворяют при массовом соотношении остаток гидроконверсии:растворитель 1:2-1:4, концентрата отработанного катализатора, содержащего распределенные ультрадисперсные частицы MoS2; окисление концентрата катализатора водным раствором смеси азотной и серной кислот при 25-100°С; нейтрализацию суспензии катализатора до рН>6 водным раствором аммиака с последующим разделением на водный раствор, представляющий собой прекурсор катализатора, и твердый остаток, содержащий соединения ванадия и никеля, в качестве растворителя используют толуол, или фракцию НК-120°С продукта гидроконверсии, или легкий газойль каталитического крекинга. Растворитель, выделенный после сепарации, возвращают для растворения остатка гидроконверсии. Водный раствор смеси кислот содержит от 600 до 800 г/л HNO3 и от 100 до 200 г/л H2SO4. Окисление концентрата катализатора проводят от 30 до 360 минут. Технический результат - повышенная степень извлечения молибдена из концентрата отработанного катализатора, выделенного из непревращенного остатка вакуумной дистилляции продукта гидроконверсии, с исключением выбросов токсичных соединений серы, ванадия и других металлов, в том числе соединений молибдена. 4 з.п. ф-лы, 2 табл., 25 пр., 1 ил.

 

Изобретение относится к области нефтепереработки, а именно к регенерации отработанного молибденсодержащего катализатора из остатка гидроконверсии тяжелого углеводородного (нефтяного) сырья и может быть использовано в гидроконверсии с применением молибденсодержащих нано-размерных катализаторов.

Гидроконверсия тяжелого нефтяного сырья используется для повышения выхода и качества легких и средних дистиллятов. При этом тяжелые углеводороды, содержащие асфальтены, смолы, гетероорганические и металлсодержащие соединения превращают в более легкие продукты и средние дистилляты с более низкой температурой кипения. Переработка тяжелого нефтяного сырья осложнена присутствием в его составе асфальтенов, смол, соединений металлов, вызывающих дезактивацию существующих промышленных катализаторов. Использование для этой цели традиционного гетерогенного катализатора на носителе неэффективно. С утяжелением сырья резко сокращается срок службы катализатора, создается проблема утилизации нанесенного отработанного катализатора. Для решения этой проблемы в последнее время применяются ультрадисперсные (наноразмерные) катализаторы без носителей.

Наиболее эффективным процессом, позволяющим до 90% конвертировать тяжелое нефтяное сырье в легкие и средние дистилляты - компоненты моторных топлив и сырье для нефтехимии, является процесс гидроконверсии с использованием ультрадисперсного наноразмерного молибденсодержащего катализатора, который постоянно выводятся из реакционной зоны вместе с остаточным продуктом процесса (см. Хаджиев С.H., Кадиев X.М., Кадиева М.X. Синтез и свойства наноразмерных систем - эффективных катализаторов гидроконверсии тяжелого нефтяного сырья. // Нефтехимия. - 2014. - Т. 54. - №5. - С. 327-351). Ввиду дороговизны соединений молибдена возникает необходимость разработки способа их извлечения из продуктов гидроконверсии. Отсутствие в настоящее время эффективной технологии регенерации ультрадисперсных катализаторов является сдерживающим фактором их практического применения при переработке тяжелого нефтяного сырья. Повышение эффективности применения ультрадисперсных катализаторов связано с возможностью их регенерации из тяжелого непревращенного остатка и повторного использования в технологическом процессе.

Известен ряд методов, относящихся к извлечению молибдена из мо-либденсодержащих катализаторов.

В патенте РФ №2146274 описан способ регенерации ультрадисперсного катализатора гидроконверсии тяжелых нефтяных остатков, согласно которому извлечение компонента катализатора (молибдена) производят путем сжигания выводимой остаточной фракции (выше 350°С) в котле при температуре 1000-1200°С с улавливанием золошлаковых остатков. Из уловленных золошлаковых остатков извлечение молибдена производят гидрометаллургическим методом с использованием водно-аммиачного раствора. Остаток после фильтрации представляет собой концентрат металлов (ванадия, никеля и др.), содержащихся в исходном сырье. Достигаемая степень извлечения молибдена не превышает 80%.

Недостатком данного способа является необходимость сжигания большого количества (10-40%) остатка продуктов гидроконверсии с температурой кипения выше 350°С, что снижает количество легких дистиллятных продуктов гидрогенизации и требует повышенных затрат на очистку дымовых газов от сернистых соединений, образующихся при сжигании, повышенные потери молибдена с дымовыми газами.

В патенте США 7214309 В2 описан способ регенерации катализатора облагораживания (гидрокрекинга, гидроочистки, гидрообессеривания и т.д.) тяжелых нефтяных остатков - высокоактивной суспензии соединений металлов группы VIB (Mo, W) и группы VIII (Ni или Со) в углеводородном масле, включающий стадии удаления масла экстракцией растворителем с выделением фильтрацией металлсодержащего коксового остатка, многостадийную экстракцию компонентов катализатора из твердого коксового остатка различными растворителями. Очевидно, что в этом процессе эффективное извлечение катализатора будет происходить при проведении процесса облагораживания в условиях, при которых катализатор будет связываться коксом.

Недостатком известного способа является сложность и дороговизна многостадийного ступенчатого извлечения катализатора из непревращенного остатка.

В патенте США 7737068 В2 компанией CHEVRON предложен способ регенерации катализатора, суспендированного в тяжелой нефти, включающий пиролиз (коксование) суспензии катализатора в тяжелом продукте при 450-510°С, с получением более легких продуктов: газа, масла и кокса. Кокс измельчают в шаровой мельнице до 44 мкм и проводят выщелачивание в автоклаве водным раствором аммиака в присутствии кислорода. Недостатком метода является сложность технологической схемы, включающей стадии коксования суспензии, содержащей катализатор, с соответствующими системами разделения продуктов коксования, измельчения кокса и многоступенчатого выщелачивания металлов, что обусловливает повышенные капитальные и эксплуатационные затраты.

Наиболее близким аналогом (прототипом) предлагаемого изобретения является описанный в патенте США 7771584 В2, согласно которому из остатка гидроконверсии, выкипающего выше 350°С, методом экстракции с использованием растворителя (толуол, нафта) проводят разделение непревращенного остатка на жидкие углеводороды и твердый продукт путем центрифугирования, фильтрации и сушки. Выделенный твердый продукт представляет собой концентрат катализатора и других металлов, содержащихся в исходном сырье, который далее контактирует с экстрагирующим металлы растворителем (таким как, кетоксим), после нескольких ступеней экстракции растворителем, выщелачивания и кристаллизации достигается извлечение металлов; побочный продукт - сульфат аммония; ванадий извлекается в виде V2O5; никель - в форме сульфата никеля; молибден - в форме димолибдата аммония. Сульфат никеля и димолибдат аммония возвращаются в узел приготовления сларри катализатора (суспензионного катализатора). Размер частиц катализатора в непревращенном остатке гидроконверсии составляет от 50 до 500 нм. Следовательно, при отделении катализатора от остатка гидроконверсии, возможно, будут иметь место потери молибдена вследствие перехода определенной его части в отделяемые жидкие углеводороды.

Недостатками прототипа являются:

- сложная и затратная схема выделения молибдена из остатка гидроконверсии, выкипающего выше 350°С, включающая многоступенчатую экстракцию целевого компонента (Мо) дорогостоящим растворителем с последующей регенерацией и возвратом растворителя, выщелачивание Мо ступенчато в несколько стадий, выделение димолибдата аммония его кристаллизацией с последующей фильтрацией и высушиванием;

- возможность потерь молибдена с отделяемыми жидкими углеводородами.

В патенте отсутствует информация о количественном извлечении молибдена в димолибдата аммония, ванадия - в V2O5; никеля - в NiS, что не позволяет оценить степень его извлечения и возврата в процесс.

Задачами изобретения является удешевление и упрощение технологического процесса регенерации ультрадисперсного катализатора, выделенного из остатка гидроконверсии при максимальной степени перевода молибдена в водный раствор прекурсора катализатора.

Для решения поставленной задачи в способе регенерации молибденсодержащего катализатора из остатка гидроконверсии тяжелого сырья, включающем стадию выделения концентрата катализатора растворением остатка гидроконверсии, сепарацией полученного раствора на жидкий фильтрат и остаток концентрата катализатора с последующей его сушкой, и стадию окисления выделенного концентрата катализатора водным раствором окислителя с выщелачиванием соединения молибдена, в качестве остатка гидроконверсии используют остаток, выкипающий выше 500°С, который растворяют при массовом соотношении остаток гидроконверсии: растворитель 1:2-1:4, фильтрат со стадии выделения концентрата катализатора разделяют на жидкие углеводороды и растворитель, стадию окисления выделенного концентрата катализатора, включающего сульфид молибдена, проводят при температуре от 25 до 100°С, в качестве окислителя используют водный раствор смеси азотной и серной кислот, после чего суспензию катализатора нейтрализуют водным раствором аммиака до получения раствора с рН>6 и фильтруют с выделением водного раствора прекурсора катализатора и твердого остатка фильтрации суспензии, содержащего соединения ванадия, никеля и других металлов.

В качестве растворителя используют толуол или фракцию НК-120°С продукта гидроконверсии, или легкий газойль каталитического крекинга, причем растворитель, выделенный после сепарации, возвращают для растворения остатка гидроконверсии.

В качестве водного раствора окислителя используют водный раствор, содержащий от 600 до 800 г/л HNO3 и от 100 до 200 г/л H2SO4.

Окисление концентрата катализатора проводят в течение от 30 до 360 минут.

Остаток фильтрации суспензии могут использовать для получения соединений ванадия и никеля.

Способ представляет собой относительно простое технологическое решение, позволяющее выделить концентрат катализатора с количественным переходом в него соединений молибдена с последующим его переводом в водный раствор прекурсора катализатора.

Важным техническим результатом настоящего изобретения также является отсутствие выбросов в атмосферу токсичных соединений серы, соединений металлов.

Регенерацию прекурсора катализатора осуществляют в результате последовательных химических реакций, протекающих на стадии окисления и выщелачивания:

Концентрированная азотная кислота окисляет дисульфид молибдена с получением молибденовой кислоты (1), которая выпадает в осадок, тем самым ингибируя процесс окисления оставшегося количества M0S2. При добавлении серной кислоты повышается концентрация сульфат-ионов в растворе и равновесие смещается в сторону образования анионных комплексов ([MoO2(SO4)2])-2) (2), что позволяет полностью удерживать молибден в растворе. Кроме того, известно, что H2SO4 улучшает смачиваемость концентрата, что обеспечивает протекание реакции окисления MOS2 с максимальной скоростью с самого начала.

При нейтрализации образовавшегося кислого раствора до рН>6 действием водного раствора аммиака, молибден переходит в форму прекурсора катализатора гидроконверсии - (NH4)2MoO4 (3).

Указанный технический результат достигается за счет следующей совокупности признаков изобретения. Способ включает в себя: выделение методом фильтрации из остатка гидроконверсии, выкипающего выше 500°С, концентрата катализатора, содержащего ультрадисперсные твердые частицы MOS2; обработку концентрата катализатора водным раствором смеси азотной и серной кислот; нейтрализацию полученной суспензии водным раствором аммиака до рН>6; фильтрацию суспензии с получением раствора прекурсора молибденсодержащего катализатора гидроконверсии и твердого остатка, содержащего соединения ванадия, никеля и других металлов.

Предлагаемый способ позволяет снизить нагрузку на блок выделения катализатора методом фильтрации более тяжелого продукта за счет снижения объема поступающего на фильтрацию остатка гидроконверсии, повысить степень извлечения молибдена из остатка гидроконверсии, исключить выбросы токсичных соединений серы, ванадия и других металлов, в том числе соединений молибдена.

Изобретение поясняется чертежом (фиг. 1), на котором представлена блочная схема реализации способа регенерации молибденсодержащего катализатора гидроконверсии тяжелого углеводородного сырья, который включает в себя следующие стадии: выделение концентрата катализатора из остатка гидроконверсии (I); извлечение и возврат использованного растворителя (II); перевод соединения молибдена в водорастворимую форму действием смеси кислот (III) - окислением и выщелачиванием; разделение суспензии на раствор прекурсора катализатора и твердый остаток, содержащий соединения ванадия, никеля и других металлов (IV), путем нейтрализации водным раствором аммония и фильтрации.

На первой стадии остаток, кипящий выше 500°С (1) и растворитель (толуол, фракция НК-120°С продукта гидроконверсии, легкий газойль каталитического крекинга) (2) при соотношении 1:(2-4) смешивают в блоке выделения концентрата катализатора (I) при температуре 90°С, а затем разделяют на жидкий и твердый продукт методом фильтрации. Из жидких продуктов (10) в блоке сепарации (II) отгоняют и возвращают на блок разделения (I) растворитель (11), а остаток сепарации - жидкие углеводороды (12) выводят и повторно подвергают гидроконверсии в качестве рисайкла в смеси со свежим сырьем. Остаток на фильтре блока разделения сушат при температуре 130°С. Далее высушенный остаток, представляющий собой концентрат катализатора, (3) направляют в блок окисления концентрата катализатора (III) водным смесевым раствором, содержащим от 600 до 800 г/л HNO3 и от 100 до 200 г/л H2SO4 (4). Предпочтительно использование раствора, содержащего 800 г/л HNO3 и 200 г/л H2SO4. Обработку концентрата катализатора проводят при следующих условиях: массовое соотношение концентрат катализатора (Т): раствор (Ж) - от 1:2,5 до 1:4; температура от 25 до 100°С; постоянное перемешивание; длительность обработки от 0,5 до 6 ч (предпочтительно: температура - 90°С; Т/Ж=1/3; время обработки - 2 ч.). Азотная кислота регенерируется из отходящих газов (9) известным промышленным методом, например, водной адсорбцией NO2 в токе кислорода и возвращается в процесс.

Суспензию (5) перед поступлением в блок фильтрации (IV) смешивают с водным раствором аммиака до получения значения рН>6, при котором выпадает в осадок часть ванадия и никеля. В блоке фильтрации суспензию разделяют на два потока: водный раствор парамолибдата аммония (прекурсора ультрадисперсного молибденового катализатора) (7), возвращаемого в процесс подготовки катализатора, и твердый продукт, представляющий собой концентрат соединения ванадия, никеля и других металлов (8).

Изобретение иллюстрируется следующими примерами.

Примеры выделения концентрата катализатора.

Пример 1.

В качестве остатка используют остаток >500°С гидроконверсии гудрона смесей Западносибирских нефтей, содержание молибдена в котором составлят 2813,5 г/т.

Для выделения концентрата катализатора в качестве растворителя используют химически чистый толуол (Х.Ч.) чистотой 99,8% по ТУ 2631-020-44493179-98. В экстрактор загружают остаток >500°С и толуол при массовом соотношении, равном 1:2, включают перемешивание и нагрев. Температуру смеси держат на уровне 90°С в течение 0,5 ч., после чего смесь подвергают фильтрации. Фильтрацию проводят в воронке Бюхнера под вакуумом. В качестве фильтрующего элемента используют бумажный фильтр («фиолетовая лента» марки FILTRAK). Фильтр с остатком промывают толуолом до тех пор, пока выделяемый фильтрат не становится бесцветным. Остаток на фильтре сушат при температуре 130°С в течение 1 ч. Материальный баланс выделения катализатора из остатка >500°С приведен в табл. 1.

Пример 2.

Способ осуществляют аналогично примеру 1, но обработку проводят при массовом соотношении остаток >500°С и толуол, равном 1/4. Материальный баланс выделения катализатора из остатка >500°С приведен в табл. 1.

Пример 3.

Способ осуществляют аналогично примеру 1, но обработку проводят с использованием в качестве растворителя фракцию гидроконверсии НК-120°С при массовом соотношении остаток >500°С: фракция НК-120°С, равным 1/2. Материальный баланс выделения катализатора из остатка >500°С приведен в табл. 1.

Пример 4.

Способ осуществляют аналогично примеру 3, но обработку проводят при массовом соотношении остаток >500°С: фракция НК-120°С, равном 1/4. Материальный баланс выделения катализатора из остатка >500°С приведен в табл. 1.

Пример 5.

Способ осуществляют аналогично примеру 3, но обработку проводят с использованием в качестве растворителя легкого газойля каталитического крекинга при массовом соотношении остаток >500°С: легкий газойль, равном 1/2. Материальный баланс выделения катализатора из остатка >500°С приведен в табл. 1.

Пример 6.

Способ осуществляют аналогично примеру 5, но обработку проводят при массовом соотношении остаток >500°С: легкий газойль, равном 1/4. Материальный баланс выделения катализатора из остатка >500°С приведен в табл. 1.

Примеры окисления и фильтрации концентрата катализатора.

Пример 7.

Высушенный остаток, полученный в примере 1, представляющий собой концентрат катализатора, в стеклянной емкости с мешалкой при соотношении Т/Ж=1/4 подвергают к обработке смесью кислот, содержащей 600 г/л HNO3 («ХЧ» ГОСТ 4204-77) и 100 г/л H2SO4 («Ч.д.а» ГОСТ 4461-77), при температуре 100°С и постоянном перемешивании в течение 0,5 ч. В полученную суспензию с рН<6 перед фильтрационным разделением добавляют 25% водный раствор аммиака («ОСЧ» ГОСТ 24147-80) до получения значения рН>6, после чего фильтруют с получением фильтрата, представляющего собой прекурсор ультрадисперсного наноразмерного молибденового катализатора, и твердого остатка на фильтре, содержащего соединения ванадия, никеля и других металлов.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 8.

Способ осуществляют аналогично примеру 7, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2

Пример 9.

Способ осуществляют аналогично примеру 7, но обработку концентрата катализатора проводят при температуре 25°С и длительности обработки 6 часов.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 10.

Способ осуществляют аналогично примеру 9, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 11.

Способ осуществляют аналогично примеру 7, но обработку концентрата катализатора проводят при температуре 90°С и соотношении Т/Ж=1/3 в течение 2 часов.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 12.

Способ осуществляют аналогично примеру 11, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 13.

Способ осуществляют аналогично примеру 12, но к обработке подвергают концентрат катализатора, полученный в примере 2.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 14.

Способ осуществляют аналогично примеру 13, но к обработке подвергают концентрат катализатора, полученный в примере 3.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 15.

Способ осуществляют аналогично примеру 14, но к обработке подвергают концентрат катализатора, полученный в примере 4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 16.

Способ осуществляют аналогично примеру 15, но к обработке подвергают концентрат катализатора, полученный в примере 5.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 17.

Способ осуществляют аналогично примеру 16, но к обработке подвергают концентрат катализатора, полученный в примере 6.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 18.

Способ осуществляют аналогично примеру 17, но обработку концентрата катализатора проводят при соотношении Т/Ж=1/2,5 смесью кислот, содержащей 600 г/л HNO3 и 100 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 19.

Способ осуществляют аналогично примеру 18, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 20.

Способ осуществляют аналогично примеру 11, но обработку концентрата катализатора проводят в течение 1 часа.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 21.

Способ осуществляют аналогично примеру 20, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 22.

Способ осуществляют аналогично примеру 20, но обработку концентрата катализатора проводят в течение 3 часов при температуре 70°С. Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 23.

Способ осуществляют аналогично примеру 22, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 24.

Способ осуществляют аналогично примеру 22, но обработку концентрата катализатора проводят при температуре 50°С в течение 4 часов. Результаты извлечения Мо из концентрата приведены в таблице 2.

Пример 25.

Способ осуществляют аналогично примеру 24, но обработку концентрата катализатора проводят смесью кислот, содержащей 800 г/л HNO3 и 200 г/л H2SO4.

Результаты извлечения Мо из концентрата приведены в таблице 2.

1. Способ регенерации молибденсодержащего катализатора из остатка гидроконверсии тяжелого сырья, включающий стадию выделения концентрата катализатора растворением остатка гидроконверсии, сепарацией полученного раствора на жидкий фильтрат и остаток концентрата катализатора с последующей его сушкой и стадию окисления выделенного концентрата катализатора водным раствором окислителя с выщелачиванием соединения молибдена, отличающийся тем, что в качестве остатка гидроконверсии используют остаток, выкипающий выше 500°С, который растворяют при массовом соотношении остаток гидроконверсии:растворитель 1:2-1:4, фильтрат со стадии выделения концентрата катализатора разделяют на жидкие углеводороды и растворитель, стадию окисления выделенного концентрата катализатора, включающего сульфид молибдена, проводят при температуре от 25 до 100°С, в качестве окислителя используют водный раствор смеси азотной и серной кислот, после чего суспензию катализатора нейтрализуют водным раствором аммиака до получения раствора с рН>6 и фильтруют с выделением водного раствора прекурсора катализатора и твердого остатка фильтрации суспензии, содержащего соединения ванадия и никеля.

2. Способ по п. 1, отличающийся тем, что в качестве растворителя используют толуол, или фракцию НК-120°С продукта гидроконверсии, или легкий газойль каталитического крекинга.

3. Способ по п. 1, отличающийся тем, что растворитель, выделенный после сепарации, возвращают для растворения остатка гидроконверсии.

4. Способ по п. 1, отличающийся тем, что в качестве водного раствора окислителя используют водный раствор, содержащий от 600 до 800 г/л HNO3 и от 100 до 200 г/л H2SO4.

5. Способ по п. 1 или 4, отличающийся тем, что окисление концентрата катализатора проводят от 30 до 360 минут.



 

Похожие патенты:

Изобретение относится к вариантам способа регенерирования одной или более частиц кобальтсодержащего катализатора Фишера-Тропша in situ в трубе реактора или ех situ вне трубы реактора, включающего следующие стадии: (i) окисление частицы (частиц) катализатора при температуре от 20 до 400°С, (ii) обработку частиц катализатора более 5 мин, (iii) высушивание и, необязательно, нагревание частицы (частиц) катализатора; и (iv) необязательно, восстановление частицы (частиц) катализатора водородом или водородсодержащим газом, причем стадия (ii) обработки включает (а)заполнение пор частицы (частиц) катализатора жидкостью с уровнем рН 10-14, содержащей аммиак и воду, при температуре 0-50°С, (б) пропускание диоксида углерода, (с) оставление в порах жидкости, обработанной диоксидом углерода на период времени более 5 мин при температуре 5-90°С.

Изобретение относится к способу регенерации молибденсодержащего катализатора из остатков гидроконверсии тяжелого нефтяного сырья. Способ включает термообработку непревращенного остатка гидроконверсии, выкипающего при температуре выше 520°С и содержащего распределенный ультрадисперсный катализатор, с получением зольного остатка, который подвергают промывке с извлечением молибденсодержащего прекурсора катализатора, который возвращают в цикл.
Изобретение относится к способу регенерирования одной или более частицы (частиц) дезактивированного кобальтсодержащего катализатора Фишера-Тропша in situ в трубе реактора, где указанная(ые) частица (частицы) катализатора дезактивируется(ются) посредством использования в процессе Фишера-Тропша, при этом упомянутый способ регенерирования содержит следующие стадии: (i) частицу (частицы) катализатора окисляют при температуре от 20 до 400°C, предпочтительно от 100 до 400°C, более предпочтительно от 200 до 400°C; (ii) частицу (частицы) катализатора обрабатывают растворителем, который содержит карбонат аммония и метиламин, этиламин, пропиламин и/или бутиламин, в течение времени более 5 минут; (iii) частицу (частицы) катализатора сушат и, необязательно, нагревают; и (iv) восстанавливают частицу (частицы) катализатора водородом или водородсодержащим газом.

Изобретение может быть использовано в химической промышленности при обезвреживании гипохлоритных пульп, образующихся в процессе очистки отходящих хлорсодержащих газов от хлора известковым молоком.

Изобретение относится к способу регенерации катализатора гидрокрекинга с взвешенным слоем, который включает: разделение (120) отходящего потока (100) из зоны (35) гидрокрекинга с взвешенным слоем на первую часть (125), включающую растворитель и осветленную смолу, и вторую часть (130), включающую смолу и катализатор; контактирование (140) второй части (130) с кислотой (145) для выщелачивания катализатора из смолы для получения водного раствора (170) и остатка (165) смолы; и контактирование (200) водного раствора (170) с анионом (205) для получения нерастворимой соли (225) и второго водного раствора (220), где нерастворимая соль (225) является катализатором.

Изобретение относится к производству автомобильных катализаторов, в частности к способу их регенерации. .
Изобретение относится к способу активации катализатора гидроочистки, содержащего оксид металла группы VIB и оксид металла группы VIII, который содержит контактирование катализатора с кислотой и органической добавкой, которая имеет температуру кипения в интервале 80-500°С и растворимость в воде, по меньшей мере, 5 грамм на литр (20°С, атмосферное давление), необязательно с последующей сушкой при таких условиях, при которых, по меньшей мере, 50% добавки остается в катализаторе.

Изобретение относится к химической промышленности, в частности к способам регенерации серебряных катализаторов процесса получения формальдегида из метанола. .
Изобретение относится к области неорганической химии, точнее к способам регенерации отработанного катализатора гидрирования 1,4-бутиндиола в 1,4-бутандиол. .

Изобретение относится к способу получения катализатора для очистки выхлопных газов двигателей внутреннего сгорания и газовых промышленных выбросов, согласно которому пористую основу покрывают каталитическим покровным слоем, причем в качестве пористой основы используют пористую керамическую заготовку, которую вначале прокаливают в вакуумной муфельной печи при температуре 630-632°С в течение 13-15 минут с последующим остыванием до 30°С, погружают в жидкость со взвешенными в ней мелкими частицами гидрата окиси алюминия в концентрации 7-9% с высокотемпературным связующим и удерживают в ней в течение 3 минут, а затем высушивают при температуре до 75°С, после чего прокаливают в течение 10-12 минут в муфельной печи при температуре 780-783°С с последующим остыванием до 30°С и помещают на 3 минуты в смесь в равных частях органических растворителей (мас.% бутиловый спирт - 20 ацетон - 10 сольвент - 33, бензин - 10 и изопропанол - 27), солей недрагоценных металлов (мас.%: вольфрама - 9, молибдена - 23, титана - 7 и аллюминия - 61) и взвешенных в ней смеси мелких частиц (мас.%: двуокиси титана - 50 и двуокиси бемита - 50) и далее извлекают из смеси и после удаления стекающего ее остатка высушивают в безвоздушной камере при температуре 32-36°С и производят термообработку для перевода солей металлов в оксиды, которую проводят при температуре 633-987°С в течение двух минут.

Изобретение относится к катализатору для синтеза этилена в процессе реакции окислительного дегидрирования этана, а также к способу приготовления этого катализатора и способу окислительного дегидрирования этана с использованием катализатора.
Изобретение относится к способу удаления мышьяка из углеводородного сырья, по меньшей мере частично жидкого при температуре окружающей среды и атмосферном давлении, содержащему по меньшей мере следующие этапы: a) приводят в контакт углеводородное сырье, водород и первую поглощающую массу, содержащую подложку и по меньшей мере один металл M1 группы VIB и по меньшей мере два металла M2 и M3 группы VIII, где металл M1 является молибденом, металл M2 является кобальтом и металл M3 является никелем; b) приводят в контакт углеводородное сырье, водород и вторую поглощающую массу в форме сульфида, содержащую подложку и никель, причем вторая поглощающая масса содержит количество никеля в диапазоне от 5 до 50% по массе NiO, в расчете на суммарную массу второй поглощающей массы в форме оксида перед сульфированием.

Предложен катализатор облагораживания тяжелого нефтяного сырья состава MoS2/MoO2, представляющий собой наночастицы на основе Mo-содержащих фаз, формирующийся «in situ» в присутствии воды с размерами 4-330 нм, содержанием фазы MoS2 5-82 мас.%, координационное число фаз MoS2 и MoO2 3,0-5,0 и 4,0-6,0.

Изобретение относится к катализаторам для окислительных превращений углеводородов, а также к способу получения данных катализаторов. Более конкретно изобретение относится к оксидным промотированным MoVTeNb катализаторам для окислительной конверсии этана в этилен, наиболее многотоннажный продукт современной нефтехимии.

Изобретение относится к каталитически активным массам, которые являются смесью содержащего молибден и ванадий многоэлементного оксида по меньшей мере с одним оксидом молибдена и которые могут быть получены согласно изобретению, их применению для катализа гетерогенно катализируемого парциального газофазного окисления (мет)акролеина до (мет)акриловой кислоты, а также к их применению для получения оболочечных катализаторов, особенно пригодных для указанного катализа.
Изобретение относится к способу изготовления оксидного катализатора, предназначенного для использования в изготовлении ненасыщенного нитрила, где оксидный катализатор включает металлический компонент, состав которого представлен следующей формулой (1):Mo1VaSbbNbcWdZeOn...
Изобретение относится к технической области каталитического синтеза жидких топливных фракций. Описан носитель для селективного синтеза керосиновой фракции из синтез-газа, данный носитель содержит следующие компоненты в частях по массе: 5-50 частей мезопористого диоксида циркония (ZrO2), 10-55 частей силикоалюмофосфатного (SAPO) молекулярного сита, 5-50 частей модифицированного мезопористого молекулярного сита Al-SBA-16, 1-3 части порошка смолы сесбании и 10-70 частей глинозема.

Изобретение относится к способу регенерации молибденсодержащего катализатора из выкипающего выше 500°С остатка гидроконверсии тяжелого углеводородного сырья. Способ включает в себя: выделение методом фильтрации из остатка гидроконверсии, выкипающего выше 500°С, который растворяют при массовом соотношении остаток гидроконверсии:растворитель 1:2-1:4, концентрата отработанного катализатора, содержащего распределенные ультрадисперсные частицы MoS2; окисление концентрата катализатора водным раствором смеси азотной и серной кислот при 25-100°С; нейтрализацию суспензии катализатора до рН>6 водным раствором аммиака с последующим разделением на водный раствор, представляющий собой прекурсор катализатора, и твердый остаток, содержащий соединения ванадия и никеля, в качестве растворителя используют толуол, или фракцию НК-120°С продукта гидроконверсии, или легкий газойль каталитического крекинга. Растворитель, выделенный после сепарации, возвращают для растворения остатка гидроконверсии. Водный раствор смеси кислот содержит от 600 до 800 гл HNO3 и от 100 до 200 гл H2SO4. Окисление концентрата катализатора проводят от 30 до 360 минут. Технический результат - повышенная степень извлечения молибдена из концентрата отработанного катализатора, выделенного из непревращенного остатка вакуумной дистилляции продукта гидроконверсии, с исключением выбросов токсичных соединений серы, ванадия и других металлов, в том числе соединений молибдена. 4 з.п. ф-лы, 2 табл., 25 пр., 1 ил.

Наверх