Кислотный состав для обработки призабойной зоны пласта неоднородных карбонатных коллекторов

Изобретение относится к нефтедобывающей промышленности. Технический результат – одинаковая эффективность воздействия на все вскрытые продуктивные горизонты со значимым отличием фильтрационно-емкостных свойств. Кислотный состав для обработки призабойной зоны пласта неоднородных карбонатных коллекторов содержит, мас.%: соляную кислоту 15-25; эмульгатор NF-15 0,4-1; нефть Iran light 10-20; ингибитор коррозии «ИКУ-118» 0,04-0,1; воду остальное. 3 табл.

 

Изобретение относится к нефтедобывающей промышленности, в частности к составам для кислотной обработки призабойной зоны пласта неоднородных карбонатных коллекторов.

Известен кислотный состав для обработки низкопроницаемых терригенных коллекторов с высокой карбонатностью и способ кислотной обработки призабойной зоны пласта с его применением (патент RU №2407769, опубл. 27.12.2010) для кислотной обработки призабойной зоны терригенных и карбонатных коллекторов, содержащий раствор соляной кислоты 24%-ной концентрации или хлорид аммония (1-5%), раствор плавиковой кислоты 50%-ной концентрации или фторид аммония или бифторид аммония (1-5%), алкилбензолсульфокислоту (10-30%) и гликоль (10-40%).

Недостатками данного состава являются его низкая эффективность при обработке карбонатных коллекторов при температурах в диапазоне от 50°C до 70°C.

Известен поверхностно-активный кислотный состав для обработки карбонатных коллекторов (патент RU №2494136, опубл. 07.03.2012) для кислотной обработки призабойной зоны пласта карбонатных коллекторов с целью повышения интенсификации добычи нефти, содержащий соляную кислоту (6-24%), спиртосодержащее соединение (5-30%), указанное ТМС «ЖениЛен» (0,5-2%), указанное катионное ПАВ (0,2-1%), стабилизатор железа (0,5-3%) и воду (остальное).

Недостатком данного состава является постоперационное ухудшение фильтрационно-емкостных свойств карбонатных коллекторов при пластовых условиях.

Известен состав для кислотной обработки призабойной зоны пласта и способ кислотной обработки призабойной зоны пласта (патент RU №2545582, опубл. 10.04.2015) для кислотной обработки призабойной зоны пласта с целью повышения приемистости нагнетательных скважин и интенсификации притока флюида из продуктивного пласта с карбонатными коллекторами, содержащий соляную кислоту (10-20%), АПАВ, НПАВ, КПАВ или их смесь (0,4-3%), Афон 300М (0,01-15%), растворитель (5-25%) и воду (остальное).

Недостатком данного состава является короткий период реакции кислоты с породой из-за быстрой ее нейтрализации.

Известен кислотный состав для обработки низкопроницаемых высокотемпературных пластов с повышенным содержанием глин и карбонатов (патент RU №2616949, опубл. 18.04.2017) принятый за прототип, для кислотной обработки призабойной зоны пласта с высокой карбонатностью (при карбонатности 5% и более), осложненного высокими пластовыми температурами до 105°C, низкими значениями проницаемости, а также повышенным содержанием глин, принятый за прототип, содержащий соляную кислоту (4-6%), органическую кислоту (5-8%), ингибитор коррозии (0,1-0,5%), поверхностно-активное вещество (0,1-0,5%), стабилизатор железа (09,75-2%) и воду (остальное).

Недостатком данного состава является повреждение пласта из-за выпадения неорганических и органических отложений, высокая скорость растворения и низкое количество растворенного карбоната при низких температурах (50-70°C).

Техническим результатом является получение состава для кислотной обработки призабойной зоне пласта, который оптимизируется экспериментальным путем процесса отклонения кислоты в целевой интервал скважины, вскрывающей несколько пропластков со значимым отличием фильтрационно-емкостных свойств, таким образом, чтобы кислотная обработка одинаково эффективно воздействовала на все вскрытые продуктивные горизонты.

Технический результат достигается тем, что состав дополнительно содержит эмульгатор Иранский NF-15 и нефть, легкую Иранскую при следующем соотношении компонентов, мас.%:

соляная кислота 15-25
эмульгатор NF-15 0,4-1
нефть Iran light 10-20
ингибитор коррозии «ИКУ-118» 0,04-0,1
вода остальное

Кислотный состав для обработки призабойной зоны пласта неоднородных карбонатных коллекторов включает в себя следующие реагенты и товарные продукты, их содержащие:

- соляная кислота 15-25%, выпускается по ГОСТ 857-95

- ингибитор коррозии «ИКУ-118» 0,1-0,5%, представляет собой гликолевый раствор;

- нефть, Iran light 10-20%;

- эмульгатор NF-15 0,4-1% (произв. Polawax или Sabowax);

- пресная вода - остальное.

Эмульгированная кислота с повышенной вязкостью повышает охват обрабатываемых зон и увеличивает достижимую глубину образующихся червоточин из-за пониженной скорости реакции с породой.

Эффективность предлагаемого состава доказана лабораторными испытаниями. Для исследований использовались:

- кислота синтетическая техническая, содержащая 36% масс. HCL, выпускается по ГОСТ 857-95;

- ингибитор коррозии «ИКУ-118», представляет собой гликолевый раствор;

- нефть Iran light https://atdmco.com/lub/crude-oil.html;

- эмульгатор NF-15 является гидрофобизатором самоэмульгирующая система растительного происхождения, получаемая из пальмового масла https://shampunka.ru/emulsionnyy-vosk-polavax-nf-polavaks--emulgator-naturalnyy-rastitelnyy/

- вода.

Пример 1 (прототип, состав №1 в таблице 1). В стакане объемом 250 мл в 87,4 мл воды растворяют 4,0 г соляной кислоты, 6,0 г муравьиной кислоты, 1,5 г стабилизатора железа «HI-IRON», 1,0 г поверхностно-активного вещества Нефтенол-ВВД, 0,1 г ингибитора коррозии «ИКУ-118».

После перемешивания получается состав со следующим содержанием ингредиентов, масс. %: соляная кислота - 4,0; муравьиная кислота - 6,0; ингибитор коррозии «ИКУ-118» - 0,1; поверхностно-активное вещество «Нефтенол-ВВД» - 1,0; стабилизатор железа «HI-IRON» - 1,5; вода - 87,4.

Пример 2. В стакане объемом 250 мл в 73,33 мл воды растворяют 15,0 г соляной кислоты, 11,0 г нефть, 0,6 г эмульгатор NF-15, 0,07 г ингибитора коррозии «ИКУ-118».

После перемешивания получается состав со следующим содержанием ингредиентов, масс. %: соляная кислота - 15,0; нефть - 11,0; ингибитор коррозии «ИКУ-118» - 0,07; эмульгатор NF-15 - 0,6; вода - 73,33.

Пример 3. В стакане объемом 250 мл в 60,91 мл воды растворяют 23,0 г соляной кислоты, 15,0 г нефть, 1,0 г эмульгатор NF-15, 0,09 г ингибитора коррозии «ИКУ-118».

После перемешивания получается состав со следующим содержанием ингредиентов, масс. %: соляная кислота - 23,0; нефть - 15,0; ингибитор коррозии «ИКУ-118» - 0,09; эмульгатор NF-15 - 1,0; вода - 60,91.

Пример 4. В стакане объемом 250 мл в 62,16 мл воды растворяют 20,0 г соляной кислоты, 17,0 г нефть, 0,8 г эмульгатор NF-15, 0,04 г ингибитора коррозии «ИКУ-118».

После перемешивания получается состав со следующим содержанием ингредиентов, масс. %: соляная кислота - 20,0; нефть - 17,0; ингибитор коррозии «ИКУ-118» - 0,04; эмульгатор NF-15 - 0,8; вода - 62,16.

Содержание компонентов в кислотных составах представлено в таблице 1.

При проведении испытания по определению скорости растворения карбонатов используются мраморные диски, площадь поверхности этих дисков вычисляется по формуле 1.

где, S - площадь поверхности мраморного диска, м2;

r - радиус диска, м2;

h - высота диска, м2.

После замеров основных геометрических параметров дисков, их промывают водой и высушивают в термошкафу до постоянной массы, последним этапом подготовки дисков, является их охлаждение в эксикаторе в течении 2 часов.

Одновременно подготавливаются фильтры, которые так же проходят процедуру сушки в термошкафу до постоянной массы, а затем охлаждаются в эксикаторе в течении 2 часов.

После подготовки диски взвешиваются на лабораторных весах с точностью до 0,0001 г. Затем берется 6 емкостей и в них заливается кислотный состав в объеме в 2,5 раза больше площади поверхности дисков, которые используются в процессе исследования. Баночки с кислотным составом помещаются в термошкафу с установленной температурой на 30 минут, для прогрева кислотного состава до температуры эксперимента. Далее в каждую из баночек помещается мраморный диск, и проба состава с диском выдерживается при заданной температуре 5, 15, 30, 60, 120 и 180 минут соответственно.

Диск, который выдерживался в растворе кислотного состава, вынимается из баночки и промывается 0,5 N раствором натрия гидроокиси и водой, сушится в термошкафу до постоянной массы, потом охлаждается в эксикаторе в течении 2 часов. Диск взвешивают, определяя потерю массы диска по формуле 2.

где, Δm - потеря массы диска, г;

m1 - масса диска до эксперимента, г;

m2 - масса диска после эксперимента, г;

Затем рассчитывается количество растворенного карбоната и скорость растворения карбоната в кислотном составе по формулам 3 и 4. После чего строятся зависимости скорости растворения и количества растворенного карбоната от времени.

где, Р - количество растворенного карбоната, %;

m1 - масса диска до эксперимента, г;

m2 - масса диска после эксперимента, г;

где, t - время эксперимента, ч.;

V - скорость растворения, г/(м2⋅ч)

В этой работе для исследований использовались ингибитор коррозии, реализуемые на рынке под торговой маркой «ИКУ-118». Исследования проводились с использованием общепринятого гравиметрического метода, а именно определялась потеря массы пластинок стали после удаления продуктов коррозии.

Стальные пластинки зачищают мелкозернистой шлифовальной бумагой, измеряют геометрические размеры и определяют их площадь, протирают спиртом для удаления грязи и жирных пятен, обертывают фильтровальной бумагой и высушивают в шкафу при 30-40°С в течение 15 минут. Затем пластины взвешивают на аналитических весах с точностью до 0,0001 г и опускают в исследуемые кислотные составы на специальных некорродирующих подвесах. Для каждого кислотного состава проводится два параллельных эксперимента. Объем требуемого для эксперимента кислотного состава берется равным 100 мл. После того, как стальные пластины опущены в исследуемый кислотный состав, их оставляют в нем на срок в 8 часов при пластовой температуре (60°С). По истечении заданного времени пластины вынимают, промывают водой, протирают спиртом, фильтровальной бумагой, высушивают в сушильном шкафу в течение 15 минут, затем взвешивают так же с точностью до 0,0001 г.

Скорость коррозии определяется по формуле:

где: g1 - масса пластины до опыта, г;

g2 - масса пластины после опыта, г;

А - площадь пластины, м2;

t - время, ч;

Vкор - скорость коррозии, г/м2⋅час.

Также был проведен реологический тест, который состоит из четырех стадий. Испытание реологических свойств эмульсии в поверхностных условиях; Прокачка эмульсии через коллектор (трубку);

Прохождение эмульсии из коллектора в карбонатный пласт с последующим его растворением (на этой стадии в эмульсию постепенно добавлялся карбонат кальция);

Откачка эмульсии из системы коллектор (трубка)-пласт.

На третьей и четвертой стадиях происходит взаимодействие кислоты с породой, что имитирует поведение эмульсии при кислотной обработке, в частности возможно проследить изменение ее вязкости.

Оптимальный эмульгированный кислотный состав был разработан и проверен в два этапа:

1) Разработка компонентного и химического состава;

2) Проведение фильтрационных исследований на керне для проверки реальных свойств разработанного кислотного состава.

Разработка компонентного и химического состава включала в себя:

1) Испытание более чем 20 эмульгаторов с использованием метода определения межфазного натяжения для получения эмульсии с требуемой вязкостью и стабильностью.

2) Проведение реологических исследований эмульсии при 4 различных условиях среды для имитации потока от устья до забоя скважины.

Первый шаг в разработке эмульгированного кислотного состава - это подбор оптимально эмульгатора и его рабочей концентрации в составе эмульсии. Для нахождения оптимального эмульгатора, позволяющего создать эмульсию необходимого уровня вязкости и стабильности в условиях проникновения в поровую среду и реагирования с породой-коллектором было протестировано более двадцати различных образцов. Для нахождения наиболее технически и экономически эффективной концентрации были проведены испытания на определение межфазного натяжения. Среди рассмотренных эмульгаторов наиболее эффективным оказался эмульгатор со сложноэфирными соединениями, включающий в себя растворы олеиновой, линолевой, линоленовой и смоляной кислот.

Кислотная фаза эмульсии подготавливается путем смешения концентрированной соляной кислоты с водой и ингибитором коррозии. Нефтяная фаза эмульсии подготавливается путем перемешивания нефти и эмульгатора при высоких оборотах. Затем кислотная фаза медленно добавляется к нефтяной и перемешивается на высоких оборотах в течение 30 минут. Далее для оценки качества подготовленной эмульсии замеряется ее электропроводность (должна быть приблизительно равна нулю).

Как видно из таблицы 2, состав №3 имеет самое низкое значения межфазного натяжения. При этом значение межфазного натяжения составляет

2,1 мН/м. При применении составов 1, 2 и 4, данное значение составляет 5,9; 3,4 и 2.8 соответственно. Таким образом, состав №3 уменьшает межфазное натяжение.

Как показано в таблице 2, скорость коррозии при наличии составов 1, 2, 3 и 4 составляет 0,56; 0,63; 0,56 и 0,71 соответственно. Также из таблицы видно, что состав №3 имеет наивысшее количество растворенного карбоната и самый длинный период активности воздействия с горной породой (почти 3 часа состав №3 активно работал). Кроме того, среди всех рассмотренных составов, состав №3 обладает самой низкой скоростью растворения при температуре 60°С.

Для фильтрационных исследований использовался керн из карбонатных коллекторов месторождений Ирана.

Параметры керна:

Длина керна - 4,0 см

Диаметр керна - 3,00 см

Пористость керна начальная - 17,2%

Начальная проницаемость керна по нефти - 4,6 мкм2

Условия эксперимента:

Температура эксперимента - 60°С

Противодавление - 8,27 МПа,

Давление обжима - 17,24 МПа

Результаты фильтрационных экспериментов представлены в таблице 3.

Как следует из представленных данных, состав №3 имеет наибольшее значение кратности увеличения проницаемости. При этом кратность увеличения проницаемости составляет почти 102 раза.

Кислотный состав для обработки призабойной зоны пласта неоднородных карбонатных коллекторов, содержащий соляную кислоту, ингибитор коррозии «ИКУ-118» и воду, отличающийся тем, что дополнительно содержит эмульгатор NF-15 и нефть Iran light при следующем соотношении компонентов, мас.%:

соляная кислота 15-25
эмульгатор NF-15 0,4-1
Нефть Iran light 10-20
ингибитор коррозии «ИКУ-118» 0,04-0,1
вода остальное



 

Похожие патенты:

Группа изобретений относится к нефтедобывающей промышленности и может быть использована для повышения нефтеотдачи карбонатных коллекторов с различной проницаемостью, насыщенных высоковязкой нефтью.

Настоящее изобретение относится к добыче текучих сред из подземных пластов с образованием сети скопления расклинивающего агента в трещинах пласта. Повторно восстанавливаемый островок расклинивающего агента, содержащий первое количество обработанного расклинивающего агента, достаточное для обеспечения формирования островков расклинивающего агента в трещинах, сформированных во время гидроразрыва, и для сохранения островков в неизменном виде, если они двигаются в пласте во время и/или после операций гидроразрыва, или во время операций закачивания, или во время операций по добыче, или для обеспечения формирования указанных островков в трещинах для обеспечения повторного формирования островков или их разрушения и повторного формирования во время указанных операций, для поддержания высокой проводимости трещины и для улавливания мелких частиц пласта во время указанных операций, где агент имеет частичное или полное покрытие из композиции, изменяющей дзета-потенциал, содержащей агрегирующую композицию, содержащую продукт реакции амина-фосфата, аминный компонент или их смеси и комбинации, а продукт реакции амина-фосфата представляет собой продукт реакции: амина, выбранного из указанных видов веществ, и сложного фосфатного эфира, выбранного из указанных видов веществ, сложного фосфатного эфира алканоламинов, фосфатных эфиров алкилированных фенолов, фосфатных эфиров этиленгликоля или пропиленгликоля.
Изобретение относится к горному делу и может быть применено для гидроразрыва пласта. Способ включает закачку в пласт пены, образующейся на забое скважины в результате одновременной закачки пенообразующего и газовыделяющего растворов.

Изобретение относится к извлечению битума из подземных локаций. Технический результат - более низкая концентрация и более высокая термальная стабильность используемых добавок, отсутствие загрязнения почвы.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для ремонтно-изоляционных работ в скважинах для ликвидации межпластовых перетоков флюидов, ограничения водопритоков и повышения эффективности работы скважин.

Группа изобретений относиться к флюидам для скважинных операций. Технический результат – повышение скорости бурения, снижение скручивающих и осевых нагрузок на бурильную колону, возможность применения в горизонтальных скважинах.

Изобретение относится к бурению нефтяных, газовых и геолого-разведочных скважин, а именно к смазочным добавкам для буровых растворов. Технический результат - сохранение высоких показателей смазочных свойств, а также повышение противоприхватных свойств на границе «металл - глинистая корка» и «металл - металл» в пресных и минерализованных буровых растворах.

Изобретение относится к нефтедобывающей промышленности, в частности к способам укрепления призабойной зоны скважины и предотвращения выноса породы. Способ укрепления призабойной зоны скважины включает последовательную закачку закрепляющего состава и отвердителя.

Настоящее изобретение относится к усилителям действия разжижителей, содержащих соединения железа, и способам их применения при гидроразрыве подземного пласта. Способ гидроразрыва подземного пласта - ГРПП, через который проходит ствол скважины, включающий стадию введения в ствол скважины жидкости для обработки скважины под давлением и со скоростью потока, которые достаточны для разрыва подземного пласта, где жидкость для обработки скважины содержит воду, по меньшей мере, один акриламидсодержащий полимер - ААСП, одну или более соль двухвалентного железа и одно или более соединений-усилителей, где количество указанной соли составляет приблизительно от 0,001 до 0,05% от объема жидкости для обработки скважины, и одно или более соединений-усилителей выбраны из группы, состоящей из мочевины, этилендиаминтетрауксусной кислоты - ЭДТА, солей ЭДТА, лимонной кислоты, аминотрикарбоновой кислоты и ее солей, полифосфонатных и полифосфатных соединений, борной кислоты и ее солей, карбонатных солей щелочных металлов, диэтилентриаминпентауксусной кислоты - ДТПА, гуминовых кислот и лигносульфатов.
Изобретение относится к способу получения концентрированной депрессорной суспензии и ингибитора асфальтосмолопарафиновых отложений. Способ включает смешение полиальфаолефина в растворе спирта, в качестве которого используют бутанол и/или гексанол, при добавлении стабилизатора анионного или катионного поверхностно-активного вещества, представляющего собой бензалкониум хлорид или лаурилсульфат натрия.

Группа изобретений относится к способам обработки подземной формации кислотными растворами. Технический результат - замедление реакции между кислотой и подземной формацией и как следствие увеличение проницаемости и продуктивности подземной формации. Водная композиция для обработки и стимулирования формации в подземной скважине содержит хлористоводородную кислоту в концентрации от 8 до 28 мас.% и по меньшей мере одну аминокислоту, причем молярное соотношение аминокислоты/хлористоводородной кислоты составляет от 0,2 до 1,5, и имеется достаточно воды для того, чтобы растворить хлористоводородную кислоту и аминокислоту, и где аминокислота выбрана из группы, состоящей из аланина, аспарагина, аспарагиновой кислоты, цистеина, глутаминовой кислоты, гистидина, лейцина, лизина, метионина, пролина, серина, треонина, валина и их комбинаций. 4 н. и 20 з.п. ф-лы, 1 ил., 1 табл., 1 пр.
Изобретение относится к области нефтедобычи, в частности к составам для воздействия на добываемые флюиды, предназначенным для образования стойкой водонефтяной эмульсии, а также для предотвращения отложения асфальтенов, смол, асфальто-смоло-парафиновых веществ (АСПВ) при добычи и транспортировки нефти. Состав содержит техническое моющее средство МЛ-81Б, отработанное моторное масло «Castrol», прошедшее фильтрацию, насыщенные и ненасыщенные жирные кислоты и щелочь, вносимые в составе хозяйственного мыла 72%, при следующем соотношении ингредиентов, мас.%: технический моющий препарат МЛ-81Б - 60,0; отработанное моторное масло «Castrol», прошедшее фильтрацию, - 10,0; насыщенные и ненасыщенные жирные кислоты и щелочь, вносимые в составе хозяйственного мыла 72%, - 30,0. Цель изобретения: повысить эффективность состава для воздействия на добываемые флюиды за счет увеличения скорости его активации.

Настоящее изобретение относится к способам и системам формирования стабилизированной эмульсии и извлечения углеводородного материала из подземного пласта. Способ получения углеводородного материала из по крайней мере одного подземного пласта и нефтеносного песчаника, включающий смешивание амфифильных наночастиц с флюидом-носителем для образования суспензии, амфифильные наночастицы включают основную часть, гидрофобные группы, присоединенные к первой стороне основной части, и гидрофильные группы, включающие анионные или катионные функциональные группы, присоединенные ко второй стороне основной части, до контактирования по крайней мере одного подземного пласта и взвеси, включающей нефтеносный песчаник и воду, с суспензией модифицируют величину рН суспензии, где модифицирование включает уменьшение величины рН суспензии, включающей амфифильные наночастицы, включающие катионные функциональные группы, для повышения растворимости амфифильных наночастиц в суспензии, реагирующей на уменьшение величины рН суспензии, или увеличение величины рН суспензии, включающей амфифильные наночастицы, включающие анионные функциональные группы, для повышения растворимости амфифильных наночастиц в суспензии, реагирующей на увеличение величины рН суспензии, контактирование по крайней мере одного подземного пласта и взвеси, включающей нефтеносный песчаник и воду, с суспензией для образования эмульсии, стабилизированной амфифильными наночастицами, и удаление углеводородов из эмульсии, стабилизированной амфифильными наночастицами. Способ формирования суспензии для заводнения, включающий гидролиз гидрофильного соединения, включающего по крайней мере одно из следующих соединений: ортосиликат, оксисилан, аминосилан, силанол, эпоксисилан и алкоксид металла, при этом образуется экспонированная гидроксильная группа, гидролиз гидрофобного соединения, включающего оксисилан, включающий неполярную углеводородную группу, взаимодействие экспонированной группы гидрофильного соединения с гидроксильной группой гидрофобного соединения, при этом образуются амфифильные наночастицы, и смешивание амфифильных наночастиц, по крайней мере, с одним флюидом-носителем. Суспензия для извлечения углеводородов из подземного пласта путем заводнения, включающая множество амфифильных наночастиц, включающих материал-основу, включающую по крайней мере одно из соединений: диоксид кремния, металл и оксид металла, множество гидрофильных функциональных групп, расположенных на поверхности материала-основы, и множество гидрофобных функциональных групп, расположенных на противоположной поверхности материала-основы, и по крайней мере один флюид-носитель, где величина рН суспензии составляет ниже чем 3,0. Изобретение развито в зависимых пунктах формулы. Технический результат – повышение эффективности извлечения углеводородов из подземного пласта. 3 н. и 17 з.п. ф-лы, 5 ил.

Группа изобретений относится к нефтяной промышленности. Технический результат - увеличение охвата обрабатываемого пласта тепловым воздействием, сокращение сроков прогрева обрабатываемого пласта, снижение энергетических затрат на реализацию способа, увеличение коэффициента нефтеизвлечения. Способ разработки залежи сверхвязкой нефти и/или битума в уплотненных и заглинизированных коллекторах включает использование пары горизонтальных нагнетательной и добывающей скважин, горизонтальные участки которых размещены параллельно один над другим в вертикальной плоскости обрабатываемого пласта, спуск колонн насосно-компрессорных труб (НКТ) или безмуфтовых длинномерных труб (БДТ) колтюбинговой комбинированной установки, позволяющих вести одновременно закачку теплоносителя и отбор продукции, закачку теплоносителя, прогрев обрабатываемого пласта с созданием паровой камеры, отбор продукции через добывающую скважину и контроль технологических параметров пласта. Перед спуском колонны НКТ или БДТ определяют приемистость горизонтальной нагнетательной скважины и коэффициенты глинистости и карбонатности в породе обрабатываемого пласта. Выделяют интервал с приемистостью от 0,1 до 10 м3/сут на 100 м длины горизонтального ствола нагнетательной скважины и коэффициентом глинистости от 0,05 до 0,95 доли ед. Определяют длину и объем выделенного интервала. При длине выделенного интервала, равной длине горизонтальной части нагнетательной скважины, спускают колонну НКТ или БДТ выше 3-5 м от забоя горизонтальной нагнетательной скважины, через колонну НКТ или БДТ закачивают кислотный состав в горизонтальную нагнетательную скважину. При значении коэффициента карбонатности от 0 до 0,049 доли ед. кислотный состав включает, мас. доли: 24%-ную ингибированную соляную кислоту 0,33-0,50; 70%-ную фтористоводородную кислоту 0,04-,07; воду - остальное. При значении коэффициента карбонатности от 0,05 до 0,95 доли ед. кислотный состав включает, мас. доли: 24%-ную ингибированную соляную кислоту 0,33-0,50; воду - остальное. Объем кислотного состава определяют в зависимости от объема выделенного интервала. Продавливают кислотный состав 5%-ным по массе водным раствором хлорида калия в объеме колонны НКТ или БДТ. Поднимают колонну технологических НКТ или БДТ в вертикальную часть скважины, закрывают горизонтальную нагнетательную скважину на реагирование до 4-5 ч. Спускают колонну НКТ или БДТ выше 3-5 м от забоя и промывают горизонтальную нагнетательную скважину аэрированной жидкостью в объеме не менее закачанного кислотного состава до нейтрального значения водородного показателя рН выносимой жидкости. Далее производят закачку теплоносителя и отбор продукции. При длине выделенного интервала меньше длины горизонтальной части нагнетательной скважины колонну НКТ или БДТ устанавливают в середину выделенного интервала, осуществляют указанные выше операции, начиная от закачки кислотного состава до его продавки. Затем перемещают колонну НКТ или БДТ до середины следующего выделенного интервала и повторяют указанные операции. Обработку начинают с ближайшего к забою выделенного интервала. 2 н.п. ф-лы, 4 ил., 1 табл., 2 пр.

Изобретение относится к составу и технологии получения композиции на основе бентонита, применяемого в бурении.. В способе получения модифицированного бентонита для буровых растворов, включающем увлажнение дробленой бентонитовой глины до заданной влажности, смешение ее с добавкой карбоната натрия с подачей нагретого воздуха, сушку, помол, используют воздух нагретый до 80-300 град С, смешивание, помол и сушку осуществляют в мельнице, обеспечивающей возможность продува горячими газами для сушки и выноса из нее измельченной высушенной глины, с получением высушенной до влажности 9-17% модифицированной бентонитовой глины с содержанием частиц размером менее 0,075 мм не менее 80% об. и характеризующейся составом, масс. %: SiO2 52,413-62,35, Al2O3 15,64-18,60, СаО 2,599-3,04, Cl 0,387-0,46, Cr2O3 0,037-0,04, Fe2O3 4,924-5,86, K2O 2,004-2,38, MgO 2,396-2,85, MnO 0,089-0,11, Na2O 2,788-3,32, P2O5 0,135-0,16, SO3 0,626-0,75, TiO2 0,626-0,75. Модифицированная бентонитовая глина для буровых растворов, характеризующаяся тем, что она получена указанным выше способом. Изобретение развито в зависимых пунктах формулы. Технический результат – обеспечение возможности получения бентонитовой глины с регулируемыми ее параметрами. 2 н. и 5 з.п. ф-лы, 2 табл.

Изобретение относится к способам гидроразрыва пластов для повышения объемов добычи из них. Способ разрыва подземного пласта содержит закачку несущей жидкости в пласт под давлением, достаточным для создания трещины в пласте, закачку несущей жидкости и частиц проппанта и гранул укрепляющей добавки в трещину, удаление несущей жидкости для формирования множества проппантных кластеров, причем каждый проппантный кластер содержит частицы проппанта и укрепляющую добавку, где проппантный кластер на 50% стабильнее по сравнению с кластером без укрепляющей добавки, размер гранул укрепляющей добавки находится в интервале от 80 до 100% от среднего размера частиц проппанта. Технический результат – повышение эффективности обработки. 3 з.п. ф-лы, 2 табл., 6 ил.

Изобретение относится к получению углеводородного матеиала, содержащегося в подземном пласте. Способ получения углеводородного материала из подземного пласта, включающий формирование суспензии для заводнения, включающей разлагающиеся частицы и флюид-носитель, закачивание суспензии в подземный пласт, содержащий углеводородный материал, для формирования эмульсии, стабилизированной разлагаемыми частицами, и удаления эмульсии из подземного пласта, и деградация по крайней мере части разлагаемых частиц после удаления указанной эмульсии из подземного пласта. Способ получения углеводородного материала из подземного пласта, включающий формирование наночастиц, каждая из которых содержит ядро, содержащее по крайней мере один из следующих металлов: Mg, Al, Са, Мn и Zn, и оболочку, инкапсулирующую ядро, и содержащую органический материал, комбинирование наночастиц с флюидом-носителем с получением суспензии для заводнения, закачивание суспензии в подземный пласт, содержащий связанный с его поверхностями углеводородный материал, для его отделения от поверхностей и образования эмульсии, стабилизированной наночастицами, удаление эмульсии из подземного пласта и модификацию по крайней мере одного из параметров: температура, значение рН и состав материала эмульсии, после удаления эмульсии из подземного пласта для взаимодействия по крайней мере части наночастиц с водным материалом для дестабилизации эмульсии и коалесценции углеводородного материала. Стабилизированная эмульсия, содержащая диспергированную фазу, включающую углеводородный материал, непрерывную фазу, включающую водный материал, и гидрофильные наночастицы, накапливающиеся на границе раздела фаз между диспергированной фазой и непрерывной фазой, где некоторое количество гидрофильных наночастиц содержит ядро, содержащее сплав Mg-Al, предназначенный для переключения между первой скоростью коррозии и второй более высокой скоростью коррозии в результате изменения по крайней мере одного свойства: повышения температуры водного материала и снижения величины рН водного материала, и оболочку, инкапсулирующую ядро и содержащую полимерный материал. Изобретение развито в зависимых пунктах формулы. Технический результат – повышение эффективности обработки. 3 н. и 17 з.п. ф-лы, 1 ил.

Изобретение относится к нефтяной и газовой промышленности. Технический результат - комплексное повышение ингибирующих и гидроизолирующих свойств и устойчивость к воздействию углекислой агрессии на буровой раствор. Буровой раствор содержит, мас.%: кальцинированную соду 0,3-0,5; гидроксид натрия 0,2-0,4; глинопорошок ПБМА 4-7; понизитель вязкости ФХЛС-М 1,0-1,5; пеногаситель БД 0,1; целлюлозу высокой вязкости АНИПОЛ-ВВ 0,2-0,4; целлюлозу низкой вязкости АНИПОЛ-НВ 0,3-0,5; карбонат кальция 33-36; цемент ПЦТ-1-50 4-5; гидроксид калия 0,2-1,0; смазывающую добавку БЛ-САЛТ 2,0-5,0; воду остальное. 1 з.п. ф-лы, 2 пр., 3 табл.

Изобретение относится к области геологоразведочного бурения и может быть использовано для восстановления дебита гидрогеологических скважин, снизивших его вследствие выпадения на поверхности фильтра содержащихся в воде солей СаСО3, MgCO3, СаSO4. Раствор для регенерации фильтров гидрогеологических скважин включает следующие компоненты, мас. %: трихлоруксусная кислота 10-17, сульфаминовая кислота 8-11, ингибитор коррозии КПИ-19 0,3-0,5, поверхностно-активное вещество ОП10 0,5-1,0, триполифосфат натрия 8-12, адипиновая кислота 8-12, вода остальное. Изобретение позволяет в среднем на 40% повысить эффективность очистки фильтра от выпавших на его поверхности солей. 1 табл.

Изобретение относится к горному делу и может быть применено для гидроразрыва пласта. Способ включает этапы, на которых: осуществляют закачивание в ствол скважины текучей среды гидроразрыва, не содержащей расклинивающий агент, с образованием трещины в пласте, вводят в импульсном режиме в ствол скважины текучую среду гидроразрыва, причем импульсный режим закачки предусматривает наличие, по меньшей мере, одного импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент, и, по меньшей мере, одного импульса закачки текучей среды гидроразрыва, не содержащей расклинивающий агент, причем во время импульса закачки текучей среды гидроразрыва, содержащей расклинивающий агент, дополнительно вводят укрепляющий и/или консолидирующий материал в текучую среду гидроразрыва, при этом увеличивают концентрацию укрепляющего и/или консолидирующего материала в импульсе закачки текучей среды гидроразрыва, содержащей расклинивающий агент, при этом произведение объемной скорости текучей среды (V) гидроразрыва (л/с) на вязкость (μ) текучей среды гидроразрыва (Па*с) не превышает 0,003 Па*л при проведении гидроразрыва. Технический результат заключается в повышении эффективности гидроразрыва пласта за счет снижения воздействия жидкости на стенки трещины и кластеры расклинивающего агента. 9 з.п. ф-лы, 3 ил.
Наверх