Способ позиционирования конца катетера

Группа изобретений относится к медицине, а именно к кардиологии. Компьютерный способ включает прием эндоваскулярного сигнала ЭКГ, ассоциированного с эндоваскулярным устройством. Обработку эндоваскулярного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды зубца Р и спектральной мощности для каждого заданного периода времени. Определение максимальной амплитуды зубца Р из множества амплитуд зубца Р и соответствующей максимальной спектральной мощности из множества спектральных мощностей. Ассоциирование максимальной амплитуды зубца Р и максимальной спектральной мощности с заранее заданным местоположением в сердце или рядом с ним. Вычисление местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе отношения амплитуды зубца Р к максимальной амплитуде зубца Р и отношения спектральной мощности к максимальной спектральной мощности и отображение пользователю местоположения эндоваскулярного устройства. Группа изобретений позволяет максимально точно неинвазивным путем определить местоположение конца кончика катетера в сердце или магистральных сосудах. 4 н. и 22 з.п. ф-лы, 15 ил.

 

ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ

[0001] Заявляется приоритет в соответствии с предварительной заявкой на патент США №61/213,474, поданной 12 июня 2009 г., которая полностью включена в настоящее описание путем ссылки.

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

[0002] Настоящее изобретение относится к позиционированию эндоваскулярного устройства. В частности, настоящее изобретение относится к способу позиционирования конца эндоваскулярного устройства, такого как центральный венозный катетер, в сердце и рядом с ним с использованием сигналов электрокардиограммы (ЭКГ) (electrocardiogram, ECG).

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

[0003] Электропроводящая система сердца формирует характерные электрические сигналы, распределение электрической энергии и характер изменения которых указывают на конкретные местоположения в грудной клетке и/или на характерные функции или состояния сердца. При эндоваскулярных измерениях, то есть измерениях внутри кровеносных сосудов и внутри сердца, некоторые параметры электрической активности сердца могут быть использованы для идентификации конкретных местоположений в сердечно-сосудистой системе и/или функциональных состояний, нормальных или патологических. Более того, путем точной локальной идентификации местоположения и типа состояния, терапия таких состояний может быть оптимизирована, а эффект такой терапии может отслеживаться в реальном масштабе времени.

[0004] Обычно используют два вида клинических исследований. Первый связан с проведением эндоваскулярных устройств через сердечно-сосудистую систему, в то время как второй связан с неинвазивным или малоинвазивным дистанционным мониторингом электрической активности сердца.

[0005] Наведение, позиционирование и подтверждение размещения эндоваскулярных катетеров необходимо в некоторых клинических применениях, таких как, например: 1. Центральный венозный доступ, например, центральный венозный катетер (central venous catheter, CVC), периферически вводимый центральный катетер (peripherally inserted central catheter, PICC), имплантируемые порты; 2. Катетеры для гемодиализа; 3. Размещение отведений водителя ритма сердца; 4. Катетеры для мониторинга гемодинамики, например, катетеры Сван- Ганца и катетеры для мониторинга центрального венозного давления; и 5. Проведение проволочных направителей катетеров и катетеров в левые отделы сердца.

[0006] Местоположение конца катетера очень важно для безопасности пациента, продолжительности и успеха процедуры. Сегодня «золотым стандартом» для подтверждения целевого местоположения конца катетера является рентген грудной клетки. Наряду с этим, в настоящее время на рынке предлагаются два вида продуктов для наведения катетера в реальном масштабе времени, в которых стремятся преодолеть ограничения, присущие подтверждению на основе рентгенограммы грудной клетки: электромагнитное подтверждение и подтверждение на основе ЭКГ. В больницах, в которых применяют процедуру наведения катетера в реальном масштабе времени, результаты улучшаются с точки зрения сокращения количества облучений, времени на осуществление процедуры и ее стоимости. При осуществлении процедуры наведения катетера в реальном масштабе времени доля успешных первых попыток обычно возрастает с 75%-80% до 90%-95%. Более того, в больницах, в которых используется проведение на основе ЭКГ, например в Италии, Бельгии, Германии, подтверждение с помощью рентгена грудной клетки было отменено более чем для 90% пациентов. Электромагнитные системы используются в основном в Соединенных Штатах Америки, в то время как системы на основе ЭКГ используются в основном в Европе. Среди других факторов, которые определяют различие между рынками в США и Европе с точки зрения выбора технологии, выделяются: а) тип медицинского персонала, допущенного к проведению процедуры: медсестры в США являются более универсальными, b) тип размещенных устройств: катетеры PICC все чаще размещаются в США, c) чувствительность к ценам: Европейский рынок представляется более чувствительным к ценам, и d) коммерциализация производства современных устройств наведения некоторыми производителями для работы исключительно с катетерами собственного производства: проникновение на рынок систем наведения отражает проникновение на рынок конкретного производителя катетеров.

[0007] Также было установлено, что существуют различные мнения относительно того, где должно быть целевое местоположение конца катетера: апример, нижняя треть верхней полой вены (superior vena cava, SVC) или правое предсердие (right atrium, RA). Следовательно, технологии наведения должны обеспечивать распознавание этих местоположений. Рентген грудной клетки, являющийся в настоящее время «золотым стандартом», не всегда обеспечивает такое распознавание, которое требует четкости изображения обычно лучше, чем 2 см. Кроме того, поскольку системы на основе ЭКГ используют физиологическую информацию, относящуюся к сердечной деятельности, их способность управлять размещением является достоверной с точки зрения анатомии. Этого не происходит в системах электромагнитного наведения, в которых измеряют расстояние между концом катетера в сосудистой сети и внешним источником референтного сигнала, обычно помещаемого на груди пациента. В связи с данным аспектом системы на основе ЭКГ могут использоваться для документирования окончательного результата местоположения катетера, потенциально заменяя рентген грудной клетки в качестве «золотого стандарта».

[0008] Являясь одним из наиболее ценных доступных диагностических инструментов, ЭКГ регистрирует электрическую активность сердца в виде сигналов (форм колебаний). Расшифровав формы этих сигналов, можно выявить нарушения ритма, отклонения в проводимости и электролитический дисбаланс. ЭКГ помогает в проведении диагностики и мониторинга таких состояний, как острые коронарные синдромы и перикардит. Электрическая активность сердца создает токи, которые распространяются через окружающую ткань к коже. Когда электроды приложены к коже, они улавливают эти электрические токи и передают их на электрокардиограф. Поскольку электрические токи распространяются от сердца к коже во многих направлениях, электроды размещают в различных местах на коже для получения полной картины электрической активности сердца. Затем электроды подсоединяют к электрокардиографу или компьютеру и регистрируют информацию в разных проекциях, которые называются отведениями и плоскостями. Отведение формирует изображение электрической активности сердца между двумя точками или полюсами. Плоскость представляет собой поперечный разрез сердца, который формирует другое изображение электрической активности сердца. В настоящее время расшифровка форм сигнала ЭКГ основывается на идентификации амплитуд компонентов сигнала, анализе и последующем сравнении амплитуд с конкретными стандартами. Варианты этих компонентов амплитуды указывают на конкретные состояния, например, повышение сегмента ST, или на некоторые местоположения в сердце, например, амплитуда зубца Р. В современной практике мониторы ЭКГ широко применяются для регистрации форм сигналов ЭКГ. Все более доступными для приобретения становятся системы с автоматической идентификацией компонентов амплитуды ЭКГ. В конкретных случаях становятся доступными средства для поддержки принятия решений и для автоматической расшифровки компонентов амплитуды ЭКГ в связи с лежащими в их основе состояниями сердца.

[0009] Дистанционный мониторинг пациента является хорошо разработанной областью медицины. И все же дистанционный мониторинг состояний сердца не так широко принят, как следовало бы и как это возможно. Одной из причин является относительно сложный способ получения сигналов, связанных с сердечной деятельностью, в частности сигналов ЭКГ. Другим важным ограничивающим фактором для современных технологий дистанционного мониторинга является использование каналов связи, таких как телефонные линии, с которыми трудно организовать интерфейс как со стороны пациента, так и со стороны врача.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0010] Варианты осуществления настоящего изобретения преимущественно предлагают компьютерные способы позиционирования конца эндоваскулярного устройства, такого как центральный венозный катетер, в сердце или рядом с ним с использованием сигналов электрокардиограммы (ЭКГ). Эндоваскулярное устройство может представлять собой центральный венозный катетер, соединенный с адаптером, который включает электрод в контакте со столбиком физиологического раствора, открытым для конца катетера, при этом эндоваскулярный сигнал ЭКГ может основываться на электрическом сигнале, измеренном с помощью этого электрода.

[0011] В соответствии с одним вариантом осуществления настоящего изобретения предлагается компьютерный способ позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы (ЭКГ). Данный способ включает прием эндоваскулярного сигнала ЭКГ, ассоциированного с эндоваскулярным устройством и включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент зубца Р, обработку эндоваскулярного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды зубца Р и спектральной мощности для каждого заранее заданного периода времени, определение максимальной амплитуды зубца Р из множества амплитуд зубца Р и соответствующей максимальной спектральной мощности из множества спектральных мощностей, ассоциирование максимальной амплитуды зубца Р и максимальной спектральной мощности с заранее заданным местоположением в сердце или рядом с ним, вычисление местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе отношения амплитуды зубца Р к максимальной амплитуде зубца Р и отношения спектральной мощности к максимальной спектральной мощности и отображение пользователю местоположения эндоваскулярного устройства.

[0012] В этом варианте осуществления местоположением эндоваскулярного устройства может являться атрио-кавальное соединение, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р больше, чем 0,9, отношение спектральной мощности к максимальной спектральной мощности больше, чем 0,9, и амплитуда зубца Р больше амплитуды зубца R. Альтернативно, местоположением эндоваскулярного устройства является верхняя часть верхней полой вены, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р меньше, чем 0,4, отношение спектральной мощности к максимальной спектральной мощности меньше, чем 0,4, и зубец Р является однополярным. Альтернативно, местоположением эндоваскулярного устройства является нижняя треть верхней полой вены, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р находится в диапазоне от 0,4 до 0,6, отношение спектральной мощности к максимальной спектральной мощности находится в диапазоне от 0,4 до 0,6 и зубец Р является однополярным. Альтернативно, местоположением эндоваскулярного устройства является правое предсердие, если отношение спектральной мощности к максимальной спектральной мощности находится в диапазоне от 0,6 до 0,9 и зубец Р является биполярным. Альтернативно, местоположением эндоваскулярного устройства является верхняя треть нижней полой вены, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р находится в диапазоне от 0,4 до 0,6, отношение спектральной мощности к максимальной спектральной мощности находится в диапазоне от 0,4 до 0,6 и зубец Р является однополярным с обратной полярностью.

[0013] В соответствии с другим вариантом осуществления изобретения вышеописанный вариант адаптируется для одновременного приема накожного сигнала ЭКГ, ассоциированного с накожным отведением ЭКГ и включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент зубца Р, обработки накожного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды накожного зубца Р и накожной спектральной мощности для каждого заранее заданного периода времени, определения максимальной амплитуды накожного зубца Р из множества амплитуд накожного зубца Р и соответствующей максимальной накожной спектральной мощности из множества накожных спектральных мощностей, ассоциирования максимальной амплитуды накожного зубца Р и максимальной накожной спектральной мощности с заранее заданным местоположением в сердце или рядом с ним и для вычисления местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе отношения амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р и отношения эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности.

[0014] В этом варианте осуществления местоположением эндоваскулярного устройства может являться атрио-кавальное соединение, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р больше, чем 2,5, отношение спектральной мощности к максимальной спектральной мощности больше, чем 2,59, и амплитуда эндоваскулярного зубца Р больше, чем амплитуда эндоваскулярного зубца R. Альтернативно, местоположением эндоваскулярного устройства является верхняя часть верхней полой вены, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р находится в диапазоне от 0,9 до 1,2, отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 0,9 до 1,2 и эндоваскулярный зубец Р является однополярным. Альтернативно, местоположением эндоваскулярного устройства является нижняя треть верхней полой вены, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р находится в диапазоне от 1,5 до 2,0, отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 1,5 до 2,0 и эндоваскулярный зубец Р является однополярным. Альтернативно, местоположением эндоваскулярного устройства является правое предсердие, если отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 2,0 до 2,5 и эндоваскулярный зубец Р является биполярным. Альтернативно, местоположением эндоваскулярного устройства является верхняя треть нижней полой вены, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р находится в диапазоне от 0,9 до 1,2, отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 0,9 до 1,2 и эндоваскулярный зубец Р является однополярным с обратной полярностью.

[0015] Таким образом, были достаточно широко описаны конкретные варианты осуществления настоящего изобретения для того, чтобы их подробное описание далее в настоящей заявке было лучше понято, и чтобы был лучше оценен вклад настоящей заявки в существующий уровень техники. Естественно, имеются и другие варианты осуществления изобретения, которые будут описаны ниже и которые составят объект изобретения в соответствии с пунктами приложенной формулы изобретения.

[0016] В этом отношении, прежде чем подробно рассмотреть по меньшей мере один вариант осуществления изобретения, следует упомянуть о необходимости понимания того, что изобретение не ограничено в своем применении деталями структуры и конфигурациями компонентов, представленных в дальнейшем описании и проиллюстрированных на чертежах. Изобретение допускает варианты осуществления в дополнение к описанным и может быть реализовано на практике и выполнено различными путями. Следует также понимать, что фразеология и терминология, использованные в настоящей заявке, а также реферат, применяются только для описания и не могут рассматриваться как ограничивающие.

[0017] По существу, специалисты оценят и то, что концепция, на которой основывается настоящее описание, может быть использована в качестве основы для разработки других структур, способов и систем для достижения некоторых целей настоящего изобретения. Следовательно, важно, что пункты формулы изобретения рассматриваются как включающие такие эквивалентные структуры, до тех пор пока они не выходят за рамки сущности и объема настоящего изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0018] На фиг.1 представлена блок-схема, отображающая устройство в соответствии с вариантом осуществления настоящего изобретения.

[0019] На фиг.2А, 2В и 2С представлены различные эндоваскулярные адаптерные устройства.

[0020] На фиг.3 представлена блок-схема электронного модуля для получения и обработки эндоваскулярной электрокардиограммы в соответствии с вариантом осуществления настоящего изобретения.

[0021] На фиг.4А, 4В, 4С и 4D представлены схемы наложения электродов, которые обеспечивают оптимальное получение эндоваскулярной электрокардиограммы в соответствии с различными вариантами осуществления настоящего изобретения. На фиг.4А представлена схема с одним отведением, на фиг.4В представлена модифицированная схема с тремя отводами с возможностями мониторинга и наведения, на фиг.4С представлена телеметрическая схема с одним заземленным отводом и на фиг.4D представлен вариант применения мониторов ЭКГ для наведения эндоваскулярных устройств.

[0022] Фиг.5 иллюстрирует типичные амплитуды сигнала электрокардиограммы в различных местоположениях центральной венозной системы.

[0023] Фиг.6 иллюстрирует типичные спектральные мощности сигнала электрокардиограммы в различных местоположениях центральной венозной системы.

[0024] Фиг.7 иллюстрирует типичное распределение электрической энергии сигнала электрокардиограммы в различных местоположениях центральной венозной системы.

[0025] На фиг.8 изображен графический пользовательский интерфейс в соответствии с вариантом осуществления настоящего изобретения.

[0026] На фиг.9 изображен графический пользовательский интерфейс в соответствии с другим вариантом осуществления настоящего изобретения.

[0027] На фиг.10А и 10В показаны типичные распечатки информации, отображенной с помощью графического пользовательского интерфейса в соответствии с вариантом осуществления настоящего изобретения.

[0028] На фиг.11 представлена блок-схема компьютерного способа позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы.

[0029] На фиг.12 представлен другой алгоритм поддержки принятия решений для компьютерного способа позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы в соответствии с альтернативным вариантом осуществления настоящего изобретения.

[0030] На фиг.13 изображена проводящая система сердца.

[0031] На фиг.14 показано распространение электрического сигнала в проводящей системе сердца.

[0032] Фиг.15 иллюстрирует электрическую активность кардиоваскулярной системы, обусловленную нейронной системой управления.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0033] Изобретение далее описывается со ссылкой на чертежи, на которых подобные цифровые обозначения относятся к подобным частям по всему описанию.

[0034] Варианты осуществления настоящего изобретения предлагают устройство (устройства), алгоритмы компьютерной обработки данных и способы получения и использования эндоваскулярных электрокардиограмм в ряде клинических применений и параметров настройки. Например, может быть использовано устройство для проведения эндоваскулярных устройств в сердце или рядом с ним, например, для проведения устройств центрального венозного доступа в верхнюю полую вену, правое предсердие и правый желудочек. Такие устройства центрального венозного доступа могут включать центральные венозные катетеры (CVC), периферически вводимые центральные катетеры (PICC), имплантируемые порты, катетеры для гемодиализа, туннельные катетеры и прочее. К другим устройствам, которые могут воплотить преимущества от проведения эндоваскулярных устройств с помощью оборудования в соответствии с настоящим изобретением, относятся временные отведения водителя ритма сердца, вводимые через центральную венозную систему. Преимущества настоящего изобретения могут также найти воплощение в катетерах и проволочных направителях катетеров, используемых в процедурах в левых отделах сердца, путем уменьшения величины контрастности и излучения, необходимых для проведения данных устройств в необходимое место. В другом примере может быть использовано устройство для малоинвазивного мониторинга и оценки состояний сердца на основе его электрической активности, например, для оценки преднагрузки в сердечном цикле или для мониторинга сегментов ST и зубцов Т при застойной сердечной деятельности.

[0035] В соответствии с одним аспектом изобретения описано устройство, содержащее стерильные адаптеры, электронный модуль для получения сигналов, компьютерный модуль, программное обеспечение и периферийные устройства и соединения. В одном варианте осуществления изобретения электронный модуль для получения сигналов может быть предназначен для получения и обработки эндоваскулярных электрических сигналов, создаваемых телом пациента (эндоваскулярная ЭКГ), в другом варианте осуществления электронный модуль может быть предназначен для получения и обработки эндоваскулярных ЭКГ, а также накожных ЭКГ.

[0036] В одном варианте осуществления изобретения электронный модуль и компьютерный модуль могут быть отдельными модулями, в другом варианте осуществления они могут быть объединены в один и тот же модуль и корпус, еще в одном варианте осуществления они могут обмениваться информацией друг с другом с помощью беспроводной связи, такой как Bluetooth. В одном варианте осуществления устройство может содержать встроенный принтер, в то время как в другом варианте осуществления принтер может быть внешним и присоединяться к устройству, а устройство может соединяться через сеть, например беспроводную, с другими устройствами. Еще в одном варианте осуществления изобретения оборудование может использоваться для телеметрии и для передачи эндоваскулярных электрокардиограмм в удаленное место, например, по телефонной линии, Интернету и/или беспроводному телефону. Возможна также любая комбинация из вышеуказанных вариантов осуществления изобретения.

[0037] Согласно другому аспекту изобретения различные схемы обеспечивают соединение эндоваскулярных устройств, таких как устройства центрального венозного доступа, и электронного модуля для получения и обработки сигналов. В одном варианте осуществления изобретения такое устройство состоит из соединительного провода с двумя концами и специальными соединительными элементами на каждом конце. Один конец провода может быть соединен с металлическим или нитиноловым проволочным направителем катетера или тонкого зонда, которые, как правило, доступны для приобретения. Другой конец провода может быть безопасным образом соединен с электронным модулем. В другом варианте осуществления устройство содержит проволочные направители с покрытием, изготовленные, например, из нитинола или нержавеющей стали с дистальным и проксимальным концами без покрытия и сантиметровой разметкой. В таком варианте осуществления проволочный направитель с покрытием вводится эндоваскулярно, при этом соединительный провод соединен с проксимальным концом проволочного направителя с покрытием. Еще в одном варианте осуществления устройство содержит адаптер катетера-шприца, снабженный электрическим соединительным проводом. Один конец электрического соединительного провода находится в контакте с жидкостью, например физиологическим раствором, протекающим через адаптер катетера-шприца. Другой конец соединительного провода может быть соединен с электронным модулем.

[0038] Согласно еще одному аспекту изобретения различные схемы наложения электродов обеспечивают оптимальное получение эндоваскулярных ЭКГ. В одном варианте осуществления изобретения используется одно отведение) для получения информации о местоположении конца эндоваскулярного устройства в сосудистой сети. В другом варианте осуществления используется модифицированная схема с тремя отведениями для осуществления одновременного мониторинга сердечной активности в трех отведениях с предоставлением в то же время информации о местоположении конца катетера. В другом варианте осуществления используется модифицированная схема с одним отведением с заземлением для телеметрии и удаленной передачи информации от конца катетера.

[0039] Согласно еще одному аспекту изобретения вводятся алгоритмы для анализа форм сигналов ЭКГ и для поддержки принятия решений на основании этих сигналов. Эти алгоритмы позволяют провести различие между разными местоположениями в сосудистой сети и оценить функции тела (систематические или в конкретных местоположениях в теле), в частности, функционирование сердца. В разных вариантах осуществления изобретения в данных алгоритмах используют анализ форм колебаний во временной области: морфологический, например, формы; статистический, например, поведения.

[0040] В других вариантах осуществления изобретения в алгоритмах используют анализ форм колебаний в частотной области: морфологический, например, формы; статистический, например, поведения. Еще в одних вариантах осуществления выполняют анализ энергии сигналов во временной и частотной областях, морфологический и статистический. В качестве средств поддержки принятия решений настоящее изобретение также рассматривает принятие решений на основе размытой информации, статистической информации и знаний.

[0041] В другом аспекте изобретения предусматривается пользовательский интерфейс, который значительно упрощает расшифровку данных и последовательность выполняемых действий. В одном варианте осуществления изобретения пользовательский интерфейс включает упрощенные графические средства, показывающие местоположение в сосудистой сети и в сердце конца применяемого эндоваскулярного устройства без демонстрации форм сигналов ЭКГ. В другом варианте осуществления пользовательский интерфейс показывает в реальном масштабе времени изменение местоположения конца применяемого эндоваскулярного устройства.

[0042] В еще одном аспекте изобретения представлены несколько способов, предусматривающих использование оборудования, рассмотренного в настоящем описании, в клинических применениях. В одном варианте осуществления изобретения предлагается компьютерный способ, предусматривающий проведение центральных венозных катетеров (катетеров CVC, катетеров PICC, катетеров для гемодиализа, имплантируемых портов и других) с использованием тонких зондов, проволочных направителей катетеров и физиологических растворов в верхнюю полую вену, нижнюю полую вену, правое предсердие и правый желудочек. Данный способ преимущественно менее чувствителен для пациентов с аритмиями по сравнению с известными решениями и представляет в большинстве клинических случаев альтернативу подтверждению местоположения конца центральных венозных катетеров на основе рентгена грудной клетки. В другом варианте осуществления изобретения предлагается компьютерный способ, предусматривающий проведение проволочных направителей катетеров с покрытием в правые и левые отделы сердца. В еще одном варианте осуществления предлагается способ, предусматривающий управление размещением временных отведений водителя ритма сердца через центральную венозную систему. В еще одном варианте осуществления предлагается способ, который является малоинвазивным и предусматривает мониторинг преднагрузки на основе использования деполяризации и ритмов сердца. В еще одном варианте осуществления изобретения предлагается способ, который является малоинвазивным и предусматривает мониторинг аритмий с использованием анализа зубца Р. В еще одном варианте осуществления предлагается способ, который является малоинвазивным и предусматривает мониторинг сердечной недостаточности с использованием анализа сегмента ST и зубца Т.

[0043] На фиг.1 представлена блок-схема, которая иллюстрирует устройство в соответствии с вариантом осуществления настоящего изобретения.

[0044] Устройство 100 может быть подключено через адаптер (120) к большому количеству устройств васкулярного доступа (110), имеющимся в продаже и разработанным под индивидуальных заказчиков. Примерами таких устройств являются: центральные венозные катетеры (CVC), периферически вводимые центральные катетеры (PICC), имплантируемые порты, туннельные катетеры, катетеры для гемодиализа, направляющие катетеры для отведений водителя ритма сердца, проволочные направители катетеров, используемые для коронарных и васкулярных интервенций, тонкие зонды, иглы для шприцев и другие. Если в качестве устройства васкулярного доступа выступает тонкий зонд, проволочный направитель катетера или игла шприца, материал, из которого устройство изготовлено, должен быть в достаточной мере электропроводным, например, нержавеющая сталь или нитинол. В таком случае, в соответствии с настоящим изобретением, должен использоваться адаптер с крючком или зажимом типа «аллигатор». Если в качестве устройства васкулярного доступа выступает катетер, необходимо использовать физиологический раствор для создания проводящего пути через один из просветов катетера. В данном случае, в соответствии с настоящим изобретением, следует использовать адаптер шприца- катетера.

[0045] Электронный модуль (130) принимает электрические сигналы от адаптера и от одного или более других электродов, размещенных на кожном покрове пациента. Альтернативно, одновременно могут использоваться более одного адаптера для подключения к более чем одному эндоваскулярному устройству для формирования различных электрических сигналов для электронного модуля. В некоторых конфигурациях устройства применение накожных электродов является опциональным. Электронный модуль обрабатывает электрические сигналы и передает их в компьютерный модуль (140) для дальнейшей обработки и других функций. В одном варианте осуществления изобретения электронный и компьютерный модули могут быть выполнены в отдельных корпусах, в другом варианте осуществления они могут быть объединены в одном корпусе. В одном варианте осуществления изобретения связь между электронным и компьютерным модулями может быть выполнена аппаратными средствами, в другом варианте она может быть беспроводной, например, с использованием Bluetooth.

[0046] Компьютерный модуль обрабатывает сигналы от электронного модуля на основе алгоритмов (170), как описано в настоящем изобретении. Компьютерный модуль также может быть соединен с периферийными устройствами (160), например принтером, или принтером для печати наклеек, или запоминающими устройствами, и обеспечивает возможность соединения, включая и беспроводную связь (150), с другими компьютерами или с Интернетом. Запоминающее устройство может быть использовано для хранения базы данных по тематике и информации, касающейся используемого применения. Интерфейс для связи может использоваться для обновления этой базы данных дистанционно в соответствии с самым последним опытом и новейшей информацией, например новыми клиническими случаями заболеваний и новыми данными, относящимися к взаимосвязям между электрокардиограммами и состояниями сердца. Компьютерный модуль поддерживает графический пользовательский интерфейс (180), оптимизированный для цели используемого клинического применения.

[0047] На фиг.2А, 2В и 2С представлены различные эндоваскулярные адаптерные устройства.

[0048] Фиг.2А иллюстрирует адаптеры, которые могут быть выполнены из изолированного проводника (255) из меди или нержавеющей стали, имеющего два конца: один конец, соединенный с устройством васкулярного доступа (255), другой конец, соединенный с электронным модулем (250). Конец, соединенный с устройствами васкулярного доступа, включает коннектор, который может иметь несколько конфигураций. В одном варианте осуществления изобретения в качестве коннектора используется коннектор с J-зажимом (230) с пружиной для изоляции, когда J-наконечник не выдвинут. В другом варианте осуществления в качестве коннектора используется изолированный зажим «аллигатор» (220). В другом варианте осуществления коннектором является адаптер катетера-шприца (210). Один конец адаптера катетера-шприца (211) может соединяться с люэровским наконечником катетера. Другой конец может соединяться (215) со шприцем. Металлическая вставка (214), например металлическое кольцо, помещается внутри корпуса адаптера и входит в контакт с физиологическим раствором, когда он протекает от шприца в направлении просвета катетера. Металлическая вставка соединяется через стенку адаптера с проводом (212), который в свою очередь соединяется с коннектором (250). В одном варианте осуществления изобретения коннектор (250) соединяется безопасным образом с помощью внешней изоляции (241) и штекеров с электронным модулем. В еще одном варианте коннектор (250) имеет оптимизированную соскообразную форму (242), обеспечивающую простое и безопасное подсоединение стандартного коннектора кабеля ЭКГ.

[0049] На фиг.2В показан новый проволочный направитель (260) катетера, обеспечивающий сбор электрической информации только на его дистальном конце (261). Проволочный направитель катетера изготовлен из электропроводных материалов с достаточно хорошей проводимостью, например, из нержавеющей стали или нитинола. Проволочный направитель покрывается электрически изолирующим покрытием, таким как конформное покрытие на основе парилена, по всей длине, за исключением дистального и проксимального концов. Катетер снабжен маркировкой длины в виде меток, напечатанных на нем (262). Дистальный конец, который является атравматическим наконечником, либо J- наконечником, либо любой другой атравматической конструкцией, не имеет покрытия и обеспечивает электрический контакт с кровью. Проксимальный конец не имеет покрытия (263) и обеспечивает электрическое соединение коннекторов, подобных изображенным на фиг.2 (220 или 230), с проволочным направителем.

[0050] На фиг.2С показан другой вариант осуществления адаптера катетера-шприца. Пластиковое изделие (270) имеет формованный конец (271), который может стыковаться с люэровским разъемом стандартного катетера и с просветом катетера. Форма и материал создают хороший контакт между концом (271) и внутренней стенкой люэровского наконечника или просвета, так что во время работы исключаются утечка протекающей жидкости и попадание в просвет воздуха. Другой конец изделия (272) является коннектором люэровского типа, который может стыковаться с любым стандартным шприцем. Корпус адаптера, или внутренняя камера (273), обеспечивает адаптирование диаметра люэровского наконечника к размеру внутреннего просвета (271) катетера и соединение электропроводного элемента во внутренней камере с проводом, соединенным с внешней поверхностью камеры через перфорацию в стенке камеры (274). Соединение через стенку камеры является водонепроницаемым. Когда через адаптер вводится физиологический раствор, соединение (274) создает водонепроницаемый проводящий путь между физиологическим раствором и внешним проводом. Адаптер (290) является пластиковым изделием, обеспечивающим сопряжение двух диаметров (291) и (292). В одном варианте осуществления изобретения конец (271) адаптера (270) стыкуется с концом (291) для просвета адаптера (290), а другой конец (292) адаптера (290) стыкуется с просветом катетера, используемого для размещения имплантируемых портов.

[0051] Фиг.3 является блок-схемой электронного модуля (300) для получения и обработки эндоваскулярной электрокардиограммы в соответствии с вариантом осуществления настоящего изобретения.

[0052] Интерфейс (310) для соединения с пациентом обеспечивает связь электрических отведений с пациентом (305). Может использоваться любая комбинация накожных электродов и/или электрических соединений с эндоваскулярными устройствами с использованием рассмотренных выше адаптеров. В одном варианте осуществления изобретения усилитель (320) является четырехкаскадным усилителем с переменным коэффициентом усиления, который усиливает электрические сигналы, поступающие по кабелю от пациента, например, с типичными электрокардиографическими значениями. Аналогово-цифровой преобразователь (330) (АЦП) преобразует сигналы в цифровой формат, читаемый микропроцессором (340). Для осуществления функции микропроцессорной обработки (340) могут использоваться микропроцессоры, микроконтроллеры, цифровые сигнальные процессоры в любом количестве и любых конструкций.

[0053] В одном варианте осуществления изобретения микроконтроллер обеспечивает управление последовательной связью с компьютерным модулем (390) через последовательный интерфейс (370) или через беспроводной интерфейс (380), а цифровой сигнальный процессор (digital signal processor, DSP) обеспечивает выполнение одного или нескольких предлагаемых алгоритмов, описанных в настоящей заявке. Альтернативно, один процессор может использоваться как для обеспечения связи, так и для обработки.

[0054] Микропроцессор (340) также получает команды от компьютерного модуля (390) и соответствующим образом управляет различными элементами электронного модуля, например, усилителем (320). Блок изоляции пациента (350) разрывает электрическую связь источника питания (360) и канала последовательной связи (370) от интерфейса (310) для соединения с пациентом (310) для обеспечения защиты пациента от поражения электрическим током. В одном варианте осуществления изобретения блок изоляции (350) может состоять из трансформатора и/или элементов связи, например, оптических элементов связи.

[0055] На фиг.4А, 4В, 4С и 4D показаны схемы наложения электродов, обеспечивающие оптимальное получение эндоваскулярной электрокардиограммы в соответствии с различными вариантами осуществления настоящего изобретения.

[0056] Фиг.4А иллюстрирует схему наложения электродов для одного отведения с референтным электродом (410), например, прикрепленным к кожному покрову пациента над правой рукой, и вторым электродом, соединенным через адаптер с эндоваскулярным устройством (415). Референтный электрод, прикрепленный к кожному покрову над правой рукой, предлагается в данной схеме только для иллюстрации. Возможны другие местоположения референтного электрода в зависимости от вида требуемой ЭКГ. Референтый электрод над правой рукой вместе с концом эндоваскулярного устройства, используемым с адаптером, может быть подобен отведению II стандартной ЭКГ. В данном случае электрокардиограммы, полученные из верхней полой вены (401) и нижней полой вены (402), могут быть оптимизированы. Референтный электрод может быть прикреплен к кожному покрову в любом другом месте для получения других отведений стандартных ЭКГ. Референтный электрод также может быть соединен с адаптерами, подсоединенными к другим эндоваскулярным устройствам, для получения более детальной локальной информации изнутри сердца пациента (400).

[0057] На фиг.4В представлена модифицированная схема наложения электродов для трех отведений с четырьмя электродами с возможностями мониторинга и наведения. Три (3) электрода соответствуют стандартным электродам ЭКГ: на правой руке (RA, 420), левой руке (LA, 425) и левой ноге (LL, 430), используемый как референтный. Четвертый электрод прикрепляется через адаптер к эндоваскулярному устройству (С, 435). В данной схеме электронный модуль и алгоритм выполняют две функции одновременно: три стандартных электрода (RA, LA и LL) выполняют функцию мониторинга сердца, в то время как электрод С (435) обеспечивает запись ЭКГ с конца устройства.

[0058] На фиг.4С отображена телеметрическая схема для одного заземленного отведения, включающая схему, изображенную на фиг.4А, и референтную «землю» (450). Данная схема может использоваться для дистанционной передачи электрокардиограмм через телеметрическую систему.

[0059] На фиг.4D представлено одно применение мониторов ЭКГ для наведения эндоваскулярных устройств. Используется стандартный монитор ЭКГ, имеющий стандартные входы RA (465), LA (460) и LL (470). Вход LA (460) соединяется с левой рукой, а вход LL (470) с левой ногой пациента. Вход RA (465) соединяется с переключателем, который может использоваться клиническим врачом для переключения входа RA (465) между электродом RA и электродом 475 катетера (С). Таким образом, может осуществляться попеременно либо мониторинг, либо управление размещением катетера.

[0060] На фиг.5 показаны типичные амплитуды сигналов электрокардиограммы в различных местах центральной венозной системы.

[0061] Представлены сердце (504), правое предсердие (501), верхняя полая вена (SVC) (502) и нижняя полая вена (inferior vena cava, IVC) (503). Местоположение А находится в верхней части SVC, местоположение В находится в нижней трети SVC, местоположение С находится в атрио-кавальном соединении, местоположение D находится в правом предсердии и местоположение Е находится в верхней части нижней полой вены.

[0062] Диаграмма 510 отображает форму сигнала ЭКГ как функцию времени, записанную в местоположении А. Абсолютная амплитуда сигнала записана на шкале амплитуды (590). В случае эндоваскулярной ЭКГ показаны стандартные элементы электрокардиограммы: зубец Р (560), зубец R (570) и зубец Т (580). Амплитуды и форма в местоположении А, записанные в схеме для одного отведения, как на фиг.4D, подобны электрокардиограмме, записанной на уровне кожного покрова с той же самой схемой наложения электродов.

[0063] Диаграмма 520 отображает эндоваскулярную ЭКГ, записанную в местоположении В. Амплитуда в этом местоположении выше амплитуды в местоположении А, но общие формы сигнала схожи в местоположениях А и В.

[0064] Диаграмма 530 отображает эндоваскулярную ЭКГ, записанную в местоположении С. В местоположении С в атрио-кавальном соединении амплитуда сигнала еще выше по сравнению с амплитудой в местоположении В, и зубец Р претерпел резкое изменение и стал выше зубца R. Такой сигнал является показателем близости синоатриального узла.

[0065] Диаграмма 540 отображает эндоваскулярную ЭКГ, записанную в местоположении D. В местоположении D в правом предсердии амплитуды схожи с амплитудами в местоположении С, но зубец Р меняет полярность, становясь биполярным. Это указывает на то, что измерение ЭКГ происходит за синоатриальным узлом.

[0066] Диаграмма 550 отображает эндоваскулярную ЭКГ, записанную в местоположении Е. В местоположении Е в нижней полой вене, сигнал похож на сигнал в местоположении А с точки зрения амплитуды, за исключением того, что зубец Р имеет обратную полярность. Различия в форме сигналов ЭКГ в разных местоположениях используются в алгоритмах, предложенных в настоящем изобретении, для распознавания соответствующих местоположений и для оценки функциональных свойств сердца и кровеносных сосудов.

[0067] Фиг.6 иллюстрирует примеры спектров мощности сигнала электрокардиограммы в различных местоположениях в центральной венозной системе с использованием спектральной шкалы (690).

[0068] Показаны сердце (604), правое предсердие (601), верхняя полая вена (SVC) (602) и нижняя полая вена (IVC) (603). Диаграмма 610 представляет спектр эндоваскулярной ЭКГ, записанной в местоположении А. В этом местоположении вид спектра (610) указывает на наличие одной средней частоты или одной полосы частот (660), а также на спектральную мощность и энергию частотного распределения, схожие с аналогичными показателями на уровне кожного покрова.

[0069] Диаграмма 620 иллюстрирует спектр эндоваскулярной ЭКГ, записанной в местоположении В. В этом местоположении частотное распределение содержит две основные полосы частот и имеет более высокие энергию и спектральную мощность по сравнению с энергией и спектральной мощностью в местоположении А.

[0070] Диаграмма 630 иллюстрирует спектр эндоваскулярной ЭКГ, записанной в местоположении С. В этом местоположении имеется несколько (3-4) основных частот или основных спектральных компонентов, распределенных в более широком диапазоне частот (670). Такое спектральное распределение характерно для распределения энергии вокруг синоартриального узла. Спектральная мощность и энергия сигнала выросли по сравнению с местоположением В.

[0071] Диаграмма 640 иллюстрирует спектр эндоваскулярной ЭКГ, записанной в местоположении D. В этом местоположении увеличивается ширина спектра, и он становится более широкополосным, что свидетельствует об электрической активности правого предсердия.

[0072] Диаграмма 650 иллюстрирует спектр эндоваскулярной ЭКГ, записанной в местоположении Е. В этом местоположении спектр частот схож со спектром в местоположении А. Различия в форме спектральных колебаний в разных местоположениях используются в алгоритмах, предложенных в настоящем изобретении, для распознавания соответствующих местоположений и для оценки функциональных свойств сердца и кровеносных сосудов.

[0073] На фиг.7 изображен пример распределения электрической энергии сигнала электрокардиограммы в различных местоположениях в центральной венозной системе. Показаны сердце (704), правое предсердие (701), верхняя полая вена (SVC) (702) и нижняя полая вена (IVC) (703). Диаграммы (710, 720, 730, 740, 750) демонстрируют распределение энергии в различных местоположениях (A, B, C, D и E соответственно), а изменения во времени используются в алгоритмах, предлагаемых в настоящем изобретении, для распознавания соответствующих местоположений и для оценки функциональных свойств сердца и кровеносного сосуда.

[0074] На фиг.8 изображен графический пользовательский интерфейс в соответствии с вариантом осуществления настоящего изобретения.

[0075] Окно (810) представляет форму сигнала ЭКГ в реальном масштабе времени в момент его получения электронным модулем в результате использования соответствующей схемы наложения электродов. Окно (820) является референтным окном и представляет застывшую форму сигнала, используемую для сравнения с текущим окном. В одном варианте осуществления изобретения референтная форма сигнала в окне (820) может быть получена с помощью электродов, соединенных с электронным модулем, при референтном местоположении катетера и/или с использованием реферетной схемы наложения накожных электродов. Например, такой референтной формой сигнала может быть ЭКГ, записанная с использованием адаптера в соответствии с настоящим изобретением, подсоединенного к эндоваскулярному устройству, которое размещено в атрио-кавальном соединении. В другом варианте осуществления изобретения референтная форма сигнала в окне 820 может быть типичной формой сигнала в конкретном местоположении в сосудистой сети или типичной формой сигнала конкретного состояния сердца, которая записывается в базу данных форм сигналов и хранится в запоминающем устройстве компьютерной системы. Если схема наложения электродов обеспечивает одновременный мониторинг сердца и регистрацию электрокардиограмм с использованием эндоваскулярного устройства, окно (830) показывает одно из стандартных отведений ЭКГ для мониторинга сердца, в то время как окно (810) показывает ЭКГ, записанную с конца эндоваскулярного устройства, подключенного к адаптеру, подобному тем, которые обсуждались выше.

[0076] Значок (870) является отображением сердца, а местоположения от А до Е (875) иллюстрируют различные местоположения в сердце и сердечно- сосудистой системе, которые могут быть распознаны путем анализа эндоваскулярных электрокардиограмм в соответствии со способами, которые раскрываются в настоящем описании. Поскольку местоположение в сосудистой сети идентифицируется с помощью алгоритмов, соответствующее место, а значит и буква на значке (875), подсвечивается или иным образом делается видимым для пользователя. Столбики (884), (885) и (886) показывают энергетические уровни сигнала. Столбик «Е» (885) отображает величину электрической энергии, рассчитанной исходя из частотного спектра ЭКГ в текущем местоположении конца эндоваскулярного устройства. Столбик «R» (884) показывает величину электрической энергии, рассчитанной исходя из частотного спектра в референтном местоположении. Столбик «М» (886) показывает величину электрической энергии, рассчитанной исходя из частотного спектра ЭКГ с использованием мониторингового сигнала ЭКГ от накожных электродов. Окно (840) отражает мониторинговую информацию, например частоту сердечных сокращений. Информация о пациенте (фамилия, дата процедуры и прочее) показана в окне (850). Окно (860) содержит элементы управления системой, такие как кнопочные устройства и статусная информация, например, шкала, скорость прокрутки, параметры системы и диагностика системы.

[0077] На фиг.9 изображен графический пользовательский интерфейс в соответствии с другим вариантом осуществления настоящего изобретения.

[0078] Значок (920) является отображением сердца, а местоположения от А до Е (930) иллюстрируют различные местоположения в сердце и сердечно- сосудистой системе, которые могут быть распознаны путем анализа эндоваскулярных электрокардиограмм. Поскольку местоположение в сосудистой сети идентифицируется с помощью алгоритмов, соответствующее место, а значит и буква на значке (930), подсвечивается или иным образом делается видимым для пользователя. Столбики (940), (950) и (960) показывают энергетические уровни сигнала. Столбик «Е» (940) представляет величину электрической энергии, рассчитанной исходя из частотного спектра ЭКГ в текущем местоположении конца эндоваскулярного устройства. Столбик «R» (950) представляет величину электрической энергии, рассчитанной исходя из частотного спектра ЭКГ в референтном местоположении. Столбик «М» (960) представляет величину электрической энергии, рассчитанной из частотного спектра ЭКГ с использованием мониторингового сигнала ЭКГ, поступающего от накожных электродов. Кнопка «Печать» («Print») (960) позволяет пользователю распечатать информацию, документирующую данный случай, на принтере, например, на принтере для печати наклеек, для быстрого прикрепления к карте клинических данных пациента.

[0079] На фиг.10А и 10В представлены типичные распечатки информации, отображенной графическим пользовательским интерфейсом, в соответствии с вариантом осуществления настоящего изобретения.

[0080] Фиг.10А демонстрирует распечатку (1000) для случая процедуры размещения конца катетера в нижней трети SVC. Поле 1010 отображает значок сердца, в соответствии с которым подсвечивается (1040) буква «В», соответствующая нижней трети верхней полой вены (SVC). Поле 1030 отображает референтную форму сигнала ЭКГ, записанную при местоположении конца катетера в атрио-кавальном соединении поблизости от синоатриального узла. Поле 1020 отображает форму сигнала ЭКГ при местоположении конца катетера в позиции, в которую он был помещен в конце процедуры. Для фиг.10А такое местоположение находится в нижней трети SVC, и форма сигнала ЭКГ соответствует этому местоположению. Также распечатываются фамилия пациента (1001) и дата процедуры.

[0081] На фиг.10В представлена похожая распечатка (1050), за исключением того, что конечная позиция в конце процедуры находится в атрио- кавальном соединении в местоположении С (1090) на значке сердца (1060). Поле «Узел SA» (синоатриальный узел («SA Node», sino-atrial node)) отображает реферетную форму сигнала ЭКГ (1080), а поле «Конечная позиция» («Final Position») (1070) показывает, что конец катетера был размещен в синоатриальном узле: форма сигнала ЭКГ в конечной позиции является схожей или даже идентичной форме сигнала в реферетном местоположении в синоатриальном узле (Узел SA). Известно, что близость узла SA указывает на местоположение в атрио-кавальном соединении. Некоторые клинические врачи иногда рассматривают эти местоположения как идентичные.

[0082] Фиг.11 представляет блок-схему компьютерного способа (1100) позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы.

[0083] Алгоритмы применяются к входному сигналу (1102) (ЭКГ), полученному адаптером для эдоваскулярных устройств и, опционально, от накожных электродов. Блок обнаружения ошибок (1105) определяет по меньшей мере три вида состояний ошибок / исключений, таких как, например, когда дефибриллятор был применен к пациенту, когда водитель ритма сердца запускает импульсы возбуждения и/или когда отключается отведение/электрод. Такие ошибки / исключения могут быть отрегулированы по-разному, и пользователь может быть проинформирован о наличии исключения и способе его урегулирования (1110).

[0084] Блок предварительной обработки (1115) может усиливать сигнал, уменьшать шум, устранять артефакты и т.п. В одном варианте осуществления изобретения изменение масштаба сигнала в соответствии с размером дисплея происходит под управлением пользователя и не является автоматическим, как в случае с большинством доступных сегодня для приобретения мониторов ЭКГ. Тем самым легко распознаются изменения в амплитуде электрокардиограмм. Высокочастотный фильтр корректирует базовую линию и сокращает такие артефакты, как дыхательный артефакт. Широкополосное подавление шума может быть получено путем использования избирательных фильтров, например вейвлет-преобразованием. Электромагнитные помехи от другого оборудования и от единой энергосистемы могут быть подавлены с помощью режекторного фильтра (узкополосного фильтра), работающего на частоте 60 Гц или 50 Гц для согласования с отечественными и международными источниками электроснабжения. Высокочастотный шум может быть подавлен с помощью фильтра низких частот, который в одном варианте осуществления изобретения реализован с использованием усреднения с переменной длиной, такого, например, как усреднение в скользящем окне, соответствующем сердечному циклу, усреднение ЭКГ по нескольким последовательным сердечным циклам и т.п. Адаптивный фильтрующий блок (1120) оптимизирует коэффициенты фильтра путем минимизации сигнала ошибки.

[0085] Блок распознавания образов во временной области (1130) идентифицирует элементы сигнала ЭКГ, их взаимосвязь (взаимосвязи) и поведение (поведения) во времени. Важным аспектом алгоритма распознавания образов во временной области в блоке 1130, также как и алгоритма блока распознавания образов в частотной области 1140, является история данных. Некоторые элементы электрокардиограмм анализируются в реальном масштабе времени, а что касается других элементов, то в памяти электронного и/или компьютерного модулей выделяется буфер данных соответствующей длины для проведения анализа сохраненных в истории данных и прогнозирования на основе этого анализа. В одном варианте осуществления настоящего изобретения буфер истории данных имеет длину в несколько секунд, что позволяет сохранить в буфере сигнал ЭКГ, соответствующий нескольким сердечным сокращениям. Техника двойной буферизации позволяет обрабатывать форму сигнала в одном буфере, в то время как второй буфер продолжает хранить сигналы. Таким образом, при обработке форм сигнала в одном буфере не происходит потерь данных сигнала. После завершения обработки данных в одном буфере результаты пересылаются к блоку (1150) алгоритмов поддержки принятия решений и буферы меняются ролями. Размер буфера соответствует продолжительности времени обработки данных для обеспечения недопущения потери данных. Подобная техника двойной буферизации также применяется в отношении данных, поступающих в блок (1140) распознавания образов в частотной области.

[0086] В случае эндоваскулярной ЭКГ элементы, которые представляют интерес, включают один или более из следующих элементов, но не ограничиваются ими: 1. Зубцы Р, Q, R, S, T и U, их пики, амплитуды и длительность; 2. Длительность сегментов/интервалов P-R, S-T и T-P; 3. Подъем сегмента S-T; 4. Отклонения интервалов P-P и R-R; 5. Отклонения интервалов S-T и R-T и других; 6. Значения полного размаха колебаний зубца Р и комплекса QRS; 7. Отношение амплитуд зубца Р и зубца R и отношение амплитуд полного размаха колебаний зубца Р и комплекса QRS; 8. Полярность зубца Р: одиночная положительная, одиночная отрицательная или биполярность; 9. Производная зубца Р, комплекса QRS и зубца Т; 10. Временное среднее значение интервала R-R и цикла сердечных сокращений; 11. Максимальное значение амплитуды / пика зубца Р и амплитуды полного размаха колебаний зубца Р в течение конкретного интервала времени; 12. Максимальное значение амплитуды / пика зубца R и амплитуды полного размаха колебаний комплекса QRS в течение конкретного интервала времени.

[0087] Некоторые техники могут быть использованы для получения информации, перечисленной выше, из форм сигналов ЭКГ, включая один или более из следующих методов, но не ограничиваются ими: 1. «Обнаружение пика»; 2. Вычисление первых производных; 3. Скользящие средние значения вдоль сигнала в одном сердечном сокращении или вдоль множества сердечных сокращений; 4. Адаптивная регулировка порога; 5. Автокорреляция.

[0088] Быстрое преобразование Фурье в блоке (1125) производит быстрое преобразование Фурье с некоторым количеством ЭКГ-выборок, хранящихся в буфере конкретной длины, например на 256, 512, 1024, 2048 или более выборок данных. Быстрое преобразование Фурье переводит сигнал из временной области в частотную область.

[0089] Блок (1140) распознавания образов в частотной области представляет различные аспекты распознавания образов, выполненных над электрокардиограммами в частотной области, включая один или более аспектов из нижеследующих, но не ограничиваются ими: 1. Анализ главных компонентов, то есть исследование наиболее существенных элементов частотного спектра (подобно анализу морфологических элементов электрокардиограммы, например конкретных колебаний и сегментов во временной области): 2. Сжатие данных для уменьшения объема вычислений на основе главных компонентов; 3. Определение количества и морфологии главных компонентов, в частности, определение того, имеет ли спектр только одну, две или множество главных частот (частотных полос); 4. Вычисление спектральной мощности и энергии сигнала по частотному спектру; 5. Скользящее среднее значение по частотному диапазону в пределах одного спектра для сокращения широкополосного шума; 6. Скользящее среднее значение по нескольким спектрам для фильтрования артефактов; 7. Определение дополнительных морфологических элементов спектра, например, максимальной частоты, энергии, соответствующей максимальной частоте, частотной гистограммы, то есть каким частотам соответствует какая энергия, частоты самого большого существенного энергетического пика и т.п.; 8. Вычисление поведения и средних в течение времени значений главных компонентов и других параметров, определенных из спектрального распределения, например, определение максимального значения энергии сигнала и спектральной мощности в течение конкретного интервала времени; 9. Определение / оценка некоторых состояний сердца на основе спектрального анализа. Осуществление такого определения / оценки также описано более подробно в блоках с 1150 по 1250.

[0090] В нескольких алгоритмах поддержки принятия решений используют информацию, предоставленную алгоритмом распознавания образов во временной области и алгоритмом распознавания образов в частотной области. В одном варианте осуществления изобретения блок (1150) поддерживает размещение эндоваскулярного устройства либо в нижней трети SVC, либо в атрио-кавальном соединении.

[0091] В частности, блок (1150) базируется на концепции первоначального достижения атрио-кавального соединения при размещении катетера. В атрио- кавальном соединении или возле синоатриального узла зубец Р и другие электрические параметры достигают максимального значения. В атрио-кавальном соединении зубец Р является однополярным. После достижения синоатриального узла в атрио-кавальном соединении, то есть при максимальном значении амплитуды пика Р и спектральной мощности, катетер оттягивается назад на несколько сантиметров до тех пор, пока амплитуда зубца Р не уменьшится до половины амплитуды, достигнутой в атрио-кавальном соединении. Считается, что местоположение катетера, когда зубец Р уменьшится до половины амплитуды, достигнутой в атрио-кавальном соединении, приходится на нижнюю треть верхней полой вены. Пиковая амплитуда зубца Р и амплитуда размаха колебаний, а также спектральная мощность используются для установления соответствия местоположения в сосудистой сети форме сигнала ЭКГ.

[0092] В частности, после приема эндоваскулярного ЭГК-сигнала, ассоциированного с эндоваскулярным устройством, этот сигнал обрабатывается в течение множества заранее заданных периодов времени для вычисления амплитуды зубца Р и спектральной мощности для каждого заранее заданного периода времени. Затем из множества амплитуд зубца Р определяется максимальная амплитуда зубца Р, равно как и соответствующая максимальная спектральная мощность из множества спектральных мощностей. Местоположение, в котором определяются указанные максимальные значения, соответствует заранее заданному местоположению в сердце или рядом с ним, такому как атрио-кавальное соединение. Затем для каждого заранее заданного периода времени рассчитывается местоположение эндоваскулярного устройства на основе отношения амплитуды зубца Р к максимальной амплитуде зубца Р и отношения спектральной мощности к максимальной спектральной мощности, а затем местоположение эндоваскулярного устройства отображается пользователю на дисплее. Дополнительно, для установления местоположения эндоваскулярного устройства могут также использоваться полярность зубца Р и амплитуда зубца R.

[0093] Для поддержки принятия решений может использоваться единый критерий или комбинация таких критериев. В одном варианте осуществления изобретения Т1, Т2 и Т3 могут быть эмпирически установленными порогами, которые отличаются для каждого пациента, и в алгоритме может использоваться адаптивная петля для настройки порогов в зависимости от текущих измерений. В другом варианте осуществления изобретения пороги являются заранее заданными.

[0094] В альтернативных вариантах осуществления изобретения отношение между пиком Р / амплитудой Р или амплитудой размаха колебаний зубца Р к пику R / амплитуде R или к амплитуде размаха колебаний комплекса QRS могут также использоваться для установления местоположения относительно синоатриального узла. В одном варианте осуществления изобретения пик / амплитуда Р должны быть равными примерно половине пика / амплитуды R и зубец Р должен быть однополярным, чтобы местоположение соответствовало нижней трети SVC. В другом варианте осуществления изобретения размах колебаний зубца Р должен быть равным половине амплитуды размаха колебаний QRS и зубец Р должен быть однополярным, чтобы местоположение соответствовало нижней трети SVC.

[0095] Как было рассмотрено выше, результаты блока 1150 поддержки принятия решений могут быть представлены пользователю, например, сильным подсвечиванием нужного местоположения на значке сердца, которое соответствует типу ЭКГ, идентифицированному системой (1160).

[0096] Блок 1250 алгоритма поддержки принятия решений базируется на сравнении зубца Р, зубца R и спектральной мощности зубца Р в текущих местоположениях со значениями этих параметров, установленных от накожных электрокардиограмм в эквивалентном отведении, например, отведении II. Пороги от Т1 до Т6 являются эмпирическими значениями и зависят от адаптивных настроек по отношению к каждому пациенту. Могут использоваться каждый из критериев или комбинация критериев, представленных на фиг.12.

[0097] Могут также использоваться другие алгоритмы принятия решений, в частности, алгоритмы, связанные с уровнем электрической энергии, рассчитанной по спектру ЭКГ. В случае размещения эндоваскулярных устройств критерием может являться то, что в местоположении, соответствующем нижней трети SVC, средняя электрическая энергия, вычисленная исходя из эндоваскулярной ЭКГ, в два раза выше средней электрической энергии, вычисленной исходя из эндоваскулярной ЭКГ на кожном уровне или из накожной ЭКГ в соответствующем отведении, например, отведении II.

[0098] Фиг.13 изображает проводящую систему сердца, а фиг.14 иллюстрирует распространение электрического сигнала в проводящей системе сердца.

[0099] Данные чертежи иллюстрируют проводящий механизм сердца, который объясняет, почему распределение электрической энергии внутри сердца при измерении указывает на определенные местоположения внутри сердца. Соответственно, могут быть измерены локальные электрические сигналы, поведения и концентрации энергии и более точно могут быть установлены местоположения внутри сердца и кровеносного сосуда, а также могут быть более точно описаны состояния сердца.

[0100] Проводящая система сердца начинается с доминирующего водителя ритма сердца, синоатриального узла (1310). Характерная частота сокращений узла SA составляет от 60 до 100 ударов/мин. Когда импульс выходит из узла SA, он движется через предсердие по пучку Бахмана (1350) и межузловым путям в сторону атрио-вентрикулярного (atro-ventricular, AV) узла (1320) и желудочков. После того, как импульс пройдет узел AV, он движется к желудочкам, вначале вниз к пучку Гиса (1330), затем вдоль ветвей пучка и, наконец, вниз к сети волокон Пуркинье (1340). Клетки водителя ритма сердца в соединительной ткани и волокна Пуркинье на желудочках в норме остаются в состоянии покоя, так как они получают импульсы из узла SA. Характерная частота сокращений соединения AV составляет от 40 до 60 ударов/мин, характерная частота сокращений желудочков равна от 20 до 40 ударов/мин. Различные скорости распространения электрических импульсов показаны на фиг.14. Из узла SA (1410) импульсы распространяются через предсердную мышцу (1420) и вентрикулярную мышцу (1460) на скорости примерно 0,5 м/с, через пучок и ветви пучка Гиса (1440) и (1450) на скорости примерно 2 м/с, через волокна Пуркинье (1470) со скоростью примерно 4 м/с и через узел AV (1430) со скоростью примерно 0,05 м/с.

[0101] Электрические сигналы и распределение электрической энергии используются для идентификации близости к синоатриальному узлу и электрической активности правого предсердия даже в случае аритмии, то есть в отсутствии когерентного зубца Р, измеренного с помощью стандартной накожной электрокардиограммы. Хотя в некоторых случаях аритмии случайный электрический сигнал, созданный в правом предсердии, не является достаточно когерентным для распространения через тело к коже, электрическая энергия все же присутствует в правом предсердии и может быть обнаружена с помощью локальных эндоваскулярных измерений как некогерентный зубец Р, то есть как значительная электрическая активность в сегменте Р сигнала ЭКГ. Измерения энергии являются также менее чувствительными к некоторым локальным аномалиям в проводимости импульсов: нарушенному автоматизму (аритмиям), ректроградному проведению импульсов, нарушениям, связанным с повторным обратным входом импульса возбуждения.

[0102] Электрические сигналы и распределение электрической энергии также предпочтительно используются для количественной оценки функциональных возможностей сердца, например, преднагрузки, которая связана с деполяризацией и растяжением сердечной мышцы.

[0103] Электрические сигналы и распределение электрической энергии также предпочтительно используются для проведения проволочных направителей и направляющих катетеров через аорту в левые отделы сердца. Данный способ позволяет упростить доступ в левое предсердие и в коронарные артерии и уменьшить значимость контрастности и излучения, необходимых для проведения эндоваскулярных устройств в данные местоположения. В другом применении может также использоваться оборудование для проведения катетеров, например, Сван-Ганца, через правый желудочек в легочную артерию. Другие эндоваскулярные устройства могут быть проведены и использованы для измерения эндоваскулярной электрической активности в других местоположениях сердечно-сосудистой системы, которые могут быть идентифицированы с помощью электрокардиограмм, измеренных с помощью нового оборудования, представленного в настоящем изобретении.

[0104] Фиг.15 иллюстрирует электрическую активность в сердечно- сосудистой системе, обусловленную нейронной системой управления. Некоторые пути проводимости связаны с механизмом управления активностью сердца (1530) и кровеносного сосуда (1520): рецепторы (1510), например, прессорные рецепторы, передают информацию, связанную с состоянием кровеносных сосудов и состоянием сердца, в нервную систему через медуллярные центры (1500). Гипоталамус (1540) и высшие центры (1550) вовлечены в обработку информации, полученной от сенсоров / рецепторов, и в реагирование на нее. В свою очередь они посылают импульсы (1560) обратно в кровеносные сосуды и сердце. Измеряя электрическую активность, связанную с системой управления, может быть получена информация о состояниях сердца, которая ранее не могла быть получена.

[0105] Многие признаки и преимущества изобретения являются очевидными из подробного описания, и, таким образом, приложенная формула изобретения охватывает все эти признаки и преимущества в рамках сущности и объема изобретения. Более того, поскольку специалисты могут столкнуться с многочисленными модификациями и вариантами изобретения, оно не может быть ограничено точными конструкцией и функционированием, которые были проиллюстрированы и описаны, и, соответственно, все подходящие модификации и эквиваленты могут быть отнесены к вариантам в рамках объема настоящего изобретения.

1. Компьютерный способ позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы (ЭКГ), включающий:

прием эндоваскулярного сигнала ЭКГ, ассоциированного с эндоваскулярным устройством, включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент зубца Р;

обработку эндоваскулярного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды зубца Р и спектральной мощности для каждого заранее заданного периода времени;

определение максимальной амплитуды зубца Р из множества амплитуд зубца Р и соответствующей максимальной спектральной мощности из множества спектральных мощностей;

определение местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе отношения амплитуды зубца Р к максимальной амплитуде зубца Р и отношения спектральной мощности к максимальной спектральной мощности; и

отображение пользователю местоположения эндоваскулярного устройства.

2. Способ по п. 1, в котором амплитуда зубца Р является значением размаха колебаний и максимальная амплитуда зубца Р является значением размаха колебаний.

3. Способ по п. 1, в котором эндоваскулярное устройство представляет собой центральный венозный катетер, соединенный с адаптером, который включает электрод в контакте со столбиком физиологического раствора, открытым для конца катетера, и эндоваскулярный сигнал ЭКГ основывается на электрическом сигнале, измеренном с помощью электрода.

4. Способ по п. 1, в котором зубец Р является сегментом Р.

5. Способ по любому из пп. 1-4, в котором местоположением эндоваскулярного устройства является атрио-кавальное соединение, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р больше чем 0,9, отношение спектральной мощности к максимальной спектральной мощности больше чем 0,9 и амплитуда зубца Р больше амплитуды зубца R.

6. Компьютерный способ позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы (ЭКГ), включающий:

прием эндоваскулярного сигнала ЭКГ, ассоциированного с эндоваскулярным устройством, включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент зубца Р;

обработку эндоваскулярного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды зубца Р и спектральной мощности для каждого заранее заданного периода времени и для определения полярности для каждой амплитуды зубца Р;

определение максимальной амплитуды зубца Р из множества амплитуд зубца Р и соответствующей максимальной спектральной мощности из множества спектральных мощностей;

определение местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе полярности зубца Р, отношения амплитуды зубца Р к максимальной амплитуде зубца Р и отношения спектральной мощности к максимальной спектральной мощности; и

отображение пользователю местоположения эндоваскулярного устройства.

7. Способ по п. 6, в котором амплитуда зубца Р является значением размаха колебаний и максимальная амплитуда зубца Р является значением размаха колебаний.

8. Способ по п. 6, в котором эндоваскулярное устройство представляет собой центральный венозный катетер, соединенный с адаптером, который включает электрод в контакте со столбиком физиологического раствора, открытым для конца катетера, и эндоваскулярный сигнал ЭКГ основывается на электрическом сигнале, измеренном с помощью электрода.

9. Способ по п. 6, в котором зубец Р является сегментом Р.

10. Способ по любому из пп. 6-9, в котором местоположением эндоваскулярного устройства является верхняя часть верхней полой вены, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р меньше чем 0,4, отношение спектральной мощности к максимальной спектральной мощности меньше чем 0,4 и зубец Р является однополярным.

11. Способ по любому из пп. 6-9, в котором местоположением эндоваскулярного устройства является нижняя треть верхней полой вены, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р находится в диапазоне от 0,4 до 0,6, отношение спектральной мощности к максимальной спектральной мощности находится в диапазоне от 0,4 до 0,6 и зубец Р является однополярным.

12. Способ по любому из пп. 6-9, в котором местоположением эндоваскулярного устройства является правое предсердие, если отношение спектральной мощности к максимальной спектральной мощности находится в диапазоне от 0,6 до 0,9 и зубец Р является биполярным.

13. Способ по любому из пп. 6-9, в котором местоположением эндоваскулярного устройства является верхняя треть нижней полой вены, если отношение амплитуды зубца Р к максимальной амплитуде зубца Р находится в диапазоне от 0,4 до 0,6, отношение спектральной мощности к максимальной спектральной мощности находится в диапазоне от 0,4 до 0,6 и зубец Р является однополярным с обратной полярностью.

14. Компьютерный способ позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы (ЭКГ), включающий:

прием эндоваскулярного сигнала ЭКГ, ассоциированного с эндоваскулярным устройством, включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент эндоваскулярного зубца Р;

одновременный прием накожного сигнала ЭКГ, ассоциированного с накожным отведением ЭКГ и включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент накожного зубца Р;

обработку эндоваскулярного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды эндоваскулярного зубца Р и эндоваскулярной спектральной мощности для каждого заранее заданного периода времени;

обработку накожного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды накожного зубца Р и накожной спектральной мощности для каждого заранее заданного периода времени;

определение максимальной амплитуды накожного зубца Р из множества амплитуд накожного зубца Р и соответствующей максимальной накожной спектральной мощности из множества накожных спектральных мощностей;

определение местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе отношения амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р и отношения эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности; и

отображение пользователю местоположения эндоваскулярного устройства.

15. Способ по п. 14, в котором амплитуды эндоваскулярного и накожного зубцов Р являются значениями размаха колебаний и максимальная амплитуда накожного зубца Р является значением размаха колебаний.

16. Способ по п. 14, в котором эндоваскулярное устройство представляет собой центральный венозный катетер, соединенный с адаптером, который включает электрод в контакте со столбиком физиологического раствора, открытым для конца катетера, и эндоваскулярный сигнал ЭКГ основывается на электрическом сигнале, измеренном с помощью электрода.

17. Способ по п. 14, в котором эндоваскулярный и накожный зубцы Р являются сегментами Р.

18. Способ по любому из пп. 14-17, в котором местоположением эндоваскулярного устройства является атрио-кавальное соединение, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р больше чем 2,5, отношение спектральной мощности к максимальной спектральной мощности больше чем 2,59 и амплитуда эндоваскулярного зубца Р больше, чем амплитуда эндоваскулярного зубца R.

19. Компьютерный способ позиционирования эндоваскулярного устройства в сердце или рядом с ним с использованием сигналов электрокардиограммы (ЭКГ), включающий:

прием эндоваскулярного сигнала ЭКГ, ассоциированного с эндоваскулярным устройством, включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент эндоваскулярного зубца Р;

одновременный прием накожного сигнала ЭКГ, ассоциированного с накожным отведением ЭКГ и включающего множество форм колебаний, каждая из которых имеет по меньшей мере компонент накожного зубца Р;

обработку эндоваскулярного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды эндоваскулярного зубца Р и эндоваскулярной спектральной мощности для каждого заранее заданного периода времени и для определения полярности для каждой амплитуды эндоваскулярного зубца Р;

обработку накожного сигнала ЭКГ в течение множества заранее заданных периодов времени для вычисления амплитуды накожного зубца Р и накожной спектральной мощности для каждого заранее заданного периода времени;

определение максимальной амплитуды накожного зубца Р из множества амплитуд накожного зубца Р и соответствующей максимальной накожной спектральной мощности из множества накожных спектральных мощностей;

определение местоположения эндоваскулярного устройства для каждого заранее заданного периода времени на основе полярности эндоваскулярного зубца Р, отношения амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р и отношения эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности; и

отображение пользователю местоположения эндоваскулярного устройства.

20. Способ по п. 19, в котором амплитуды эндоваскулярного и накожного зубцов Р являются значениями размаха колебаний и максимальная амплитуда накожного зубца Р является значением размаха колебаний.

21. Способ по п. 19, в котором эндоваскулярное устройство представляет собой центральный венозный катетер, соединенный с адаптером, который включает электрод в контакте со столбиком физиологического раствора, открытым для конца катетера, и эндоваскулярный сигнал ЭКГ основывается на электрическом сигнале, измеренном с помощью электрода.

22. Способ по п. 19, в котором эндоваскулярный и накожный зубцы Р являются сегментами Р.

23. Способ по любому из пп. 19-22, в котором местоположением эндоваскулярного устройства является верхняя часть верхней полой вены, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р находится в диапазоне от 0,9 до 1,2, отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 0,9 до 1,2 и эндоваскулярный зубец Р является однополярным.

24. Способ по любому из пп. 19-22, в котором местоположением эндоваскулярного устройства является нижняя треть верхней полой вены, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р находится в диапазоне от 1,5 до 2,0, отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 1,5 до 2,0 и эндоваскулярный зубец Р является однополярным.

25. Способ по любому из пп. 19-22, в котором местоположением эндоваскулярного устройства является правое предсердие, если отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 2,0 до 2,5 и эндоваскулярный зубец Р является биполярным.

26. Способ по любому из пп. 19-22, в котором местоположением эндоваскулярного устройства является верхняя треть нижней полой вены, если отношение амплитуды эндоваскулярного зубца Р к максимальной амплитуде накожного зубца Р находится в диапазоне от 0,9 до 1,2, отношение эндоваскулярной спектральной мощности к максимальной накожной спектральной мощности находится в диапазоне от 0,9 до 1,2 и эндоваскулярный зубец Р является однополярным с обратной полярностью.



 

Похожие патенты:

Группа изобретений относится к медицине. Способ электрокардиографического (ЭКГ) мониторинга субъекта реализуют с помощью системы ЭКГ мониторинга.

Группа изобретений относится к медицинской технике, а именно к средствам магнитно-резонансной томографии в сочетании с электрокардиографией. Защищенный от магнитного резонанса (MP) кабель для измерения биопотенциалов содержит четыре или более электропроводящих проводов, расположенных в плоской конфигурации параллельно друг другу, и жесткую, не испускающую протоны подложку, которая удерживает четыре или более проводящих проводов с управляемым сопротивлением в плоской конфигурации параллельно друг другу, причем жесткая подложка содержит плоскую оболочку из пеноматериала, окружающую и удерживающую проводящие провода параллельно в общей плоскости.

Группа изобретений относится к медицинской технике, а именно к средствам обеспечения стандартного сигнала электрокардиограммы (ЭКГ) для тела человека с использованием бесконтактных ЭКГ датчиков.

Группа изобретений относится к медицинской технике, а именно к электродным катетерам, используемым для стимуляции и картирования электрической активности сердца, а также для абляции участков с нарушенной электрической активностью, и, в частности, к катетерам с отклоняемой частью и рукояткой управления для управления отклонением.

Группа изобретений относится к медицинской технике. Зажим (100) для конечностей для устройства ЭКГ содержит первую (101) и вторую (103) части зажима, соединяющий их пружинный элемент (105) и медицинский электрод, установленный на первой (101) части зажима.

Изобретение относится к медицинской технике. Устройство определения полости для определения полости в объекте содержит вводимый элемент для введения в полость, модуль определения изгиба для определения соприкасающихся изгибов и модуль реконструкции полости для реконструкции полости на основе определенных изгибов.

Группа изобретений относится к медицинской технике, а именно к электрофизиологическим (ЭФ) катетерам, в частности к ЭФ-катетерам, предназначенным для картирования и/или абляции в сердце.

Группа изобретений относится к медицинской технике, а именно к системе направления для помощи при введении иглы в организм пациента. Узел иглы содержит муфту, имеющую углубление; канюлю, дистально проходящую из муфты вдоль продольной оси, причем канюля образует дистальный кончик иглы; и магнитный элемент, включенный в муфту.

Изобретение относится к медицинской технике. Аппаратно-программный комплекс для диагностики и лечения сердечно-сосудистых заболеваний содержит канал тестирования и определения режима воздействия на пациента, каналы диагностики и лечения, блок управления и хранения информации с блоком питания.

Группа изобретений относится к медицинской технике, а именно к вариантам катетера для стимуляции и картирования электрической активности в сердце и абляции участков с нарушенной электрической активностью, и способу изготовления точечного электрода катетера.
Наверх