Сирена для бурового раствора с высокой мощностью сигнала для дистанционных измерений в процессе бурения

Изобретение относится к бурению скважин, в частности к средствам передачи информации в скважине по гидравлическому каналу связи. Техническим результатом является повышение эффективности передачи информации за счет увеличения амплитуды импульсов давления. В частности, предложен инструмент для выполнения измерений в процессе бурения (MWD), содержащий: датчик; кодирующее устройство, функционально связанное с датчиком; и модулятор, функционально связанный с кодирующим устройством и содержащий: первый статор; ротор; и второй статор, при этом ротор расположен между первым статором и вторым статором. 3 н. и 14 з.п. ф-лы, 4 ил.

 

РОДСТВЕННЫЕ ЗАЯВКИ

[0001] По настоящей заявке испрашивается приоритет согласно предварительной заявке на патент США №62/103,421, поданной 14 января 2015 года и озаглавленной «High Signal Strength Mud Siren for MWD Telemetry» («Сирена для бурового раствора с высокой мощностью сигнала для дистанционных измерений в процессе бурения»), которая полностью включена в настоящий документ посредством ссылки.

ОБЛАСТЬ ИЗОБЕРТЕНИЯ

[0002] Настоящее изобретение относится, в общем, к области телеметрических систем и, в частности, не ограничиваясь этим, к генераторам акустических сигналов, используемым в буровых операциях в стволе скважины.

УРОВЕНЬ ТЕХНИКИ

[0003] Скважины обычно бурят для производства жидкостей на нефтяной основе из подземных резервуаров. Во многих случаях буровое долото соединено с бурильной колонной и вращается наземной буровой установкой. Буровой раствор циркулирует через бурильную колонну, чтобы охлаждать долото, когда оно прорезает подземные горные породы, и выводить буровой шлам из ствола скважины. Использование долот вращательного бурения и бурового раствора хорошо известно в области техники.

[0004] По мере улучшения технологий бурения, стали возможными способы «измерения в процессе бурения» (measurement while drilling, MWD), которые позволяют бурильщику точно определять местоположение бурильной колонны и долота, а также условия в стволе скважины. Оборудование для выполнения измерений в процессе бурения обычно содержит один или более датчиков, которые выявляют состояние окружающей среды или положение и передают эту информацию бурильщику на поверхности. Эта информация может быть передана на поверхность с использованием акустических сигналов, несущих кодированные данные об измеренном состоянии.

[0005] В известных системах для создания акустических сигналов используются генераторы колебаний, которые создают быстрые изменения давления бурового раствора. Эти быстрые изменения давления создают импульсы, которые переносятся через буровой раствор в приемники, расположенные на поверхности или вблизи нее. В предшествующем уровне техники генераторы импульсов давления, или сирены для бурового раствора (mud sirens), содержат один статор, один ротор и двигатель для управляемого вращения ротора. Селективное вращение ротора временно ограничивает и высвобождает поток бурового раствора через сирену для бурового раствора. Управляя вращением ротора, сирена для бурового раствора может создать последовательность импульсов давления, которые могут быть интерпретированы и декодированы на поверхности.

[0006] Хотя сирены для бурового раствора являются в общем эффективными, они могут иметь недостатки, связанные с ограничениями по полосе пропускания и ухудшением сигнала на больших расстояниях из-за слабости импульсов давления. Соответственно, имеется потребность в улучшенной сирене для бурового раствора, которая создает более мощный импульс давления, который будет перемещаться на большее расстояние и переносить дополнительные данные. На устранение этих и других недостатков предшествующего уровня техники направлено настоящее изобретение.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0007] Настоящее изобретение включает инструмент для выполнения измерений в процессе бурения, который содержит датчик, кодирующее устройство, функционально связанное с датчиком, и модулятор, функционально связанный с кодирующим устройством. Модулятор содержит первый статор, ротор и второй статор.

[0008] В другом аспекте настоящее изобретение включает модулятор для использования с кодирующим устройством бурового инструмента. Модулятор содержит первый статор, ротор и второй статор. Ротор расположен между первым и вторым статорами.

[0009] В еще одном аспекте настоящее изобретение включает буровую систему, приспособленную для использования при бурении подземной скважины. Буровая система содержит бурильную колонну, буровое долото и инструмент для выполнения измерений в процессе бурения, расположенный между бурильной колонной и буровым долотом. Инструмент для выполнения измерений в процессе бурения содержит датчик, кодирующее устройство, функционально связанное с датчиком, и модулятор, функционально связанный с кодирующим устройством. Модулятор содержит первый статор, ротор и второй статор.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0010] Фиг. 1 представляет буровую систему, выполненную в соответствии с вариантом осуществления настоящего изобретения.

[0011] Фиг. 2 представляет вид в поперечном сечении варианта осуществления модулятора и двигателя буровой системы, показанной на фиг. 1.

[0012] Фиг. 3 представляет вид сверху статора модулятора, показанного на фиг. 2.

[0013] Фиг. 4 представляет вид сверху ротора модулятора, показанного на фиг. 2.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0014] В соответствии с вариантом осуществления настоящего изобретения фиг. 1 представляет буровую систему 100 в стволе 102 скважины. Буровая система 100 содержит бурильную колонну 104, буровое долото 106 и инструмент 108 для выполнения измерений в процессе бурения. Следует понимать, что буровая система также содержит дополнительные компоненты, включая буровые установки, буровые насосы, другие наземные устройства и скважинное оборудование.

[0015] Инструмент 108 для выполнения измерений в процессе бурения может содержать один или более датчиков 110, модуль 112 кодирующего устройства, генератор 114, модулятор 116, модуль 118 двигателя и приемник 120. Датчики 110 выполнены с возможностью измерять состояние в буровой системе 100 или в стволе 102 скважины и выдавать репрезентативный сигнал измерения. Такие измерения могут включать, например, измерения температуры, давления, вибрации, крутящего момента, наклона, магнитного направления и положения. Сигналы от датчиков 110 кодируются модулем 112 кодирующего устройства в командные сигналы, подаваемые в модуль 118 двигателя.

[0016] На основе командных сигналов из модуля 112 кодирующего устройства, модуль 118 двигателя селективно вращает модулятор 116 путем изменения открытой области в модуляторе 116, через которую может проходить буровой раствор под давлением. Быстрое изменение размера пути потока через модулятор 116 увеличивает и уменьшает давление бурового раствора, протекающего через инструмент 108 для выполнения измерений в процессе бурения. Изменение давления создает акустические импульсы, которые несут кодированные сигналы от датчиков 110. Импульсы давления передаются через ствол 102 скважины в приемник 120 и обрабатываются устройствами на поверхности для предоставления бурильщику или оператору информации о буровой системе 100 и о стволе 102 скважины.

[0017] Датчики 110, модуль 112 кодирующего устройства и модуль 118 двигателя инструмента 108 для выполнения измерений в процессе бурения могут работать с использованием электричества. Электричество может подаваться через отрывной кабель от источника питания, от бортовой аккумуляторной батареи или посредством работы генератора 114. Генератор 114 содержит двигатель с гидроприводом и электрический генератор. Двигатель с гидроприводом может представлять собой гидравлический забойный двигатель или турбинный двигатель, который преобразует часть энергии в находящейся под давлением буровой жидкости во вращательное движение. Вращательное движение используется для вращения генератора, который создает электрический ток. Следует понимать, что некоторые комбинации аккумуляторных батарей, генераторов и отрывных кабелей могут использоваться для обеспечения питания инструмента 108 для выполнения измерений в процессе бурения.

[0018] Обратимся к фиг. 2, где представлено поперечное сечение модуля 118 двигателя и модулятора 116. Модуль 118 двигателя содержит двигатель 122, который поворачивает вал 124. Двигатель 122 представляет собой электродвигатель, который снабжается током от генератора 114 или другого источника питания. Альтернативно, двигатель 122 представляет собой двигатель с гидроприводом, который содержит контроллер скорости и направления, управляемый электрическими сигналами, создаваемыми модулем 112 кодирующего устройства.

[0019] Модулятор 116 имеет корпус 126, первый статор 128, ротор 130 и второй статор 132. Первый и второй статоры 128, 132 зафиксированы в стационарном положении внутри корпуса 126. В отличие от них, ротор 130 прикреплен к валу 124 и выполнен с возможностью вращения по отношению к первому и второму статорам 128, 132. Таким образом, ротор 130 располагается между первым и вторым статорами 128, 132. Ротор 130 может быть закреплен на валу 124 посредством прессовой посадки, шпоночного соединения или других фиксирующих механизмов.

[0020] Обратимся сейчас также к фиг. 3 и 4, на которых представлены виды сверху первого статора 128, ротора 130 и второго статора 132. В частности, фиг. 3 представляет вид сверху варианта осуществления первого и второго статоров 128, 132. Фиг. 4 представляет вид сверху ротора 130. И первый, и второй статор 128, 132 содержит множество статорных лопаток 134 и статорных каналов 136, расположенных между статорными лопатками 124. Хотя показаны четыре статорные лопатки 134 и четыре статорных канала 136, следует понимать, что первый и второй статоры 128, 132 могут иметь дополнительное или меньшее количество лопаток и каналов. Следует также понимать, что первый и второй статоры 128, 132 могут иметь лопатки различной геометрии и конфигурации. В варианте осуществления изобретения, показанном на фиг. 2, первый и второй статоры 128, 132 вращательно смещены внутри корпуса 126 так, что статорные лопатки 134 на первом статоре 128 не выровнены со статорными лопатками 134 на втором статоре 132.

[0021] Ротор 130 имеет ряд роторных лопаток 138 и роторных каналов 140. Роторные лопатки 138 могут иметь уклон для ускорения прохождения жидкости через ротор 130. Хотя показаны четыре роторные лопатки 138 и четыре роторных канала 140, следует понимать, что ротор 130 может иметь дополнительное или меньшее количество лопаток и каналов.

[0022]В процессе использования буровой раствор проходит через корпус 126 и через статорные каналы 136 первого статора, через роторные каналы 140 ротора 130 и через статорные каналы 136 второго статора 132. Угловое положение ротора 130 по отношению к первому и второму статорам 128, 132 определяет степень увеличения или уменьшения скорости бурового раствора при его прохождении через модулятор 116. Изменяя угловое положение ротора 130, можно быстро и точно отрегулировать изменения скорости прохождения раствора и результирующие изменения давления бурового раствора. В отличие от известных сирен для бурового раствора, использование второго статора 132 внутри модулятора 116 существенно увеличивает амплитуду импульсов давления, выходящих из модулятора 116. Повышенная мощность сигналов импульсов давления обеспечивает дополнительную емкость для переноса данных и увеличивает расстояние, на которое импульсы давления могут перемещаться до их ослабления. Соответственно, использование второго статора 132 внутри модулятора 116 обеспечивает существенное улучшение по сравнению с предшествующим уровнем техники.

[0023] Следует понимать, что хотя выше были описаны многочисленные характеристики и преимущества различных вариантов осуществления настоящего изобретения вместе с их структурой и функциями, приведенное описание является лишь иллюстративным, и могут быть произведены изменения, особенно в структуре и организации частей, в пределах сущности настоящего изобретения, выраженной терминами, используемыми в широком общем смысле в формуле изобретения. Специалистам в области техники ясно, что принципы настоящего изобретения могут быть применены к другим системам в пределах сущности изобретения.

1. Инструмент для выполнения измерений в процессе бурения (MWD), содержащий: датчик; кодирующее устройство, функционально связанное с датчиком; и модулятор, функционально связанный с кодирующим устройством и содержащий: первый статор; ротор; и второй статор, при этом ротор расположен между первым статором и вторым статором.

2. Инструмент по п. 1, также содержащий генератор.

3. Инструмент по п. 1, в котором первый статор содержит множество статорных лопаток и второй статор содержит множество статорных лопаток.

4. Инструмент по п. 1, в котором положение первого статора смещено относительно второго статора, так что статорные лопатки первого статора не выровнены со статорными лопатками второго статора.

5. Инструмент по п. 1, в котором ротор содержит множество роторных лопаток.

6. Инструмент по п. 1, в котором роторные лопатки имеют уклон.

7. Модулятор для использования в инструменте для выполнения измерений в процессе бурения (MWD) с кодирующим устройством бурового инструмента, содержащий: первый статор; ротор; и второй статор, при этом ротор расположен между первым статором и вторым статором.

8. Модулятор по п. 7, в котором первый статор содержит множество статорных лопаток и второй статор содержит множество статорных лопаток.

9. Модулятор по п. 7, в котором положение первого статора смещено относительно второго статора, так что статорные лопатки первого статора не выровнены со статорными лопатками второго статора.

10. Модулятор по п. 7, в котором ротор содержит множество роторных лопаток.

11. Модулятор по п. 7, в котором роторные лопатки имеют уклон.

12. Буровая система для использования при бурении подземной скважины, содержащая: бурильную колонну; буровое долото; и инструмент для выполнения измерений в процессе бурения, расположенный между бурильной колонной и буровым долотом и содержащий: датчик; кодирующее устройство, функционально связанное с датчиком; и модулятор, функционально связанный с кодирующим устройством и содержащий: первый статор; ротор; и второй статор, при этом ротор расположен между первым статором и вторым статором.

13. Буровая система по п. 12, в которой инструмент для выполнения измерений в процессе бурения содержит: двигатель; и вал, соединенный с двигателем и ротором.

14. Буровая система по п. 12, в которой первый статор содержит множество статорных лопаток и второй статор содержит множество статорных лопаток.

15. Буровая система по п. 14, в которой положение первого статора смещено относительно второго статора, так что статорные лопатки первого статора не выровнены со статорными лопатками второго статора.

16. Буровая система по п. 15, в которой ротор содержит множество роторных лопаток.

17. Буровая система по п. 16, в которой роторные лопатки имеют уклон.



 

Похожие патенты:

Группа изобретений относится к нефтегазовой промышленности и используется для определения точности установки технических колонн труб в кондукторе при строительстве скважин на шельфе.

Изобретение относится к нефтедобыче, а именно к контролю разработки нефтяных месторождений промыслово-геофизическими методами исследований скважин (ПГИ), и может быть использовано для проведения и интерпретации промыслово-геофизических исследований эксплуатационных горизонтальных нефтяных скважин (ГС) с многостадийным гидроразрывом пласта (МГРП), для оценки профиля притока с целью последующего обоснования мероприятий по интенсификации и оптимизации выработки пласта.

Изобретение относится к области термометрии. Техническим результатом является упрощение технологии, повышение точности измерений температуры за счет подавления температурных колебаний, вызванных свободной тепловой конвекцией.

Изобретение относится к нефтедобывающей промышленности и может быть использовано при управлении скважиной на нефтяных месторождениях. Технической результат - повышение достоверности контроля обводненности продукции скважины.

Изобретение относится к бурению нефтяных и газовых скважин, а именно к наземным комплексам контроля параметров промывочной жидкости. Устройство содержит датчик влагомера и блок детектирования плотномера, взаимодействующий с источником гамма-излучения, заключенным в защитный экран, герметичный короб с электронным блоком обработки сигналов и компьютер.

Группа изобретений относится к горному делу и может быть применена для насосной системы в скважине. Система включает двигательный узел, насос, приводимый в движение двигательным узлом, а также один или более датчиков, сконфигурированных для измерения рабочего параметра в насосной системе и для выдачи сигнала, являющегося представлением измеренного параметра.

Изобретение относится к геологии и горному делу и может быть использовано при геологическом исследовании и изучении хвостохранилищ, эфельных отвалов, иных массивов, сложенных на основе тонко дробленых и/или измельченных минеральных масс, в том числе, химически опасных продуктов.

Изобретение относится к области добычи нефти и газа, в частности к инспектированию скважин и передаче информации о результатах контроля параметров технологического процесса добычи нефти и газа, и может быть использовано для снятия показаний и контроля проводимых работ на нефтегазовых скважинах и нефтепромысловом оборудовании, не оснащенных или частично оснащенных АСУ ТП.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для контроля глубины спуска в скважину колонны труб. Техническим результатом является повышение точности определения глубины погружения бурового оборудования независимо от параметров буровой лебедки.

Изобретение относится к локационному оборудованию, применяемому при строительстве скважин методом бестраншейной технологии, и используется в системах позиционирования для горизонтально-направленного бурения.

Группа изобретений относится к скважинной компоновке и способу ориентации расположения и приведения в действие активированных давлением инструментов. Скважинная компоновка включает в себя ориентирующее инструмент устройство, включающее в себя функциональный блок, который получает результаты измерений скважинных параметров, и генерирующее импульсы устройство, которое передает результаты измерений скважинных параметров для того, чтобы ориентировать расположение скважинного инструмента.

Изобретение относится к средствам передачи информации в скважине по гидроимпульсному каналу связи. Техническим результатом является расширение арсенала технических средств для скважинного гидроимпульсного канала связи.

Изобретение относится к средствам телеметрии в скважине и может быть использовано для устранения помех, обусловленных работой бурового насоса. В частности, предложен способ фильтрации помех, обусловленных работой бурового насоса, при гидроимпульсной телеметрии, включающий следующее: прием выходного сигнала датчика хода насоса; выбор коэффициента адаптации в модуле адаптивного фильтра; корректировку коэффициента адаптации, когда модуль адаптивного фильтра достигает сходимости; прием входного сигнала датчика; подачу на выход отфильтрованного сигнала; и изменение конфигурации бурового инструмента, основываясь на выходном сигнале.

Изобретение относится к средствам телеметрии в скважине и может быть использовано для устранения помех, обусловленных работой бурового насоса. В частности, предложен способ фильтрации помех, обусловленных работой бурового насоса, при гидроимпульсной телеметрии, включающий следующее: прием выходного сигнала датчика хода насоса; выбор коэффициента адаптации в модуле адаптивного фильтра; корректировку коэффициента адаптации, когда модуль адаптивного фильтра достигает сходимости; прием входного сигнала датчика; подачу на выход отфильтрованного сигнала; и изменение конфигурации бурового инструмента, основываясь на выходном сигнале.

Изобретение относится к электротехнике. Технический результат состоит в повышении надежности.

Изобретение относится к электротехнике. Технический результат состоит в повышении надежности.

Изобретение относится к телеметрии, используемой при разведке и добыче нефти и газа. Техническим результатом является увеличение скорости передачи данных гидроимпульсной телеметрии, а также уменьшение коэффициента битовых ошибок в приемнике.

Изобретение относится к средствам передачи сигналов по гидравлическому каналу связи. Техническим результатом является обеспечение надежной передачи данных между двумя инструментами, разделенными промежуточным инструментом.

Изобретение относится к средствам приведения в действие скважинных устройств. Техническим результатом является обеспечение быстрого и точного приведения в действие многочисленных скважинных инструментов без использования дополнительных средств, таких как, шары или радиочастотные метки.

Изобретение относится к средствам передачи информации по гидравлическому каналу связи. Техническим результатом является повышение надежности передачи информации за счет исключения потенциальных путей утечек в устройстве генерирования импульсов давления.

Изобретение относится к горному делу и предназначено для определения пространственного положения взрывных шпуров. Тренажер глазомерного определения пространственного положения забуриваемых шпуров содержит имитатор буровой машины, включающий буровой молоток с буровой штангой. Штанга выполнена телескопической с возможностью соединения с шаровой пятой шарового шарнира. Шарнир закреплен на плоскости забоя и присоединен к буровому молотку шарнирно. Телескопическая опора присоединена шарнирно к буровому молотку и соединена с основанием. На верхней площадке бурового молотка соосно с ним размещен кожух, снабженный угломерной шкалой в виде полукруга с отвесом. К поверхности кожуха перпендикулярно плоскости круговой угломерной шкалы прикреплена буссоль посредством муфты, с возможностью поворота вокруг оси муфты. Разметка шкалы буссоли ориентирована в направлении шарового шарнира. Буссоль снабжена центрирующим грузом. Все элементы устройства, кроме стрелки буссоли, выполнены из немагнитного материала. Достигается технический результат – упрощение конструкции устройства и снижение трудоемкости работы при обучении бурильщиков. 1 з.п. ф-лы, 7 ил.
Наверх