Способ получения монофазных солей актинидов и устройство для их получения



Способ получения монофазных солей актинидов и устройство для их получения
Способ получения монофазных солей актинидов и устройство для их получения
Способ получения монофазных солей актинидов и устройство для их получения
Способ получения монофазных солей актинидов и устройство для их получения
B01D1/22 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2702095:

Акционерное общество "Радиевый институт имени В.Г. Хлопина" (RU)

Изобретение относится к области ядерной энергетики, в частности к получению монофазных порошков солей актинидов, которые являются прекурсорами при создании таблеток ядерного топлива. Способ получения монофазных порошков солей актинидов включает непрерывное дозирование азотнокислого актинидсодержащего раствора и муравьиной кислоты в верхнюю зону цилиндрического обогреваемого реактора. Смешение реагентов происходит в тонкой пленке на теплообменной поверхности, где реакционную смесь непрерывно перемешивают лопастями ротора. Устройство для получения монофазных порошков солей актинидов включает вертикальный роторно-пленочный реактор, снабженный нагревателем, штуцеры для ввода реагентов и для отвода парогазовой фазы. Внутри реактора расположен ротор, выполненный с возможностью вращения, с закрепленными по всей его длине лопастями. Штуцер для ввода реагентов выполнен в виде тройника, а приемный бункер выполнен с возможностью присоединения к корпусу аппарата и снабжен нагревателем. Изобретение позволяет при компактности и простоте устройства получать сухие монофазные порошки солей актинидов за одну стадию, при этом обеспечивает повышение производительности, химической и ядерной безопасности процесса. 2 н. и 4 з.п. ф-лы, 6 ил.

 

Изобретение относится к области ядерной энергетики, в частности, к способам получения монофазных порошков солей актинидов, которые являются прекурсорами при создании таблеток ядерного топлива.

Известны способы промышленного получения монофазных порошков солей актинидов путем соосаждения соединений из растворов, таких, как оксалаты, полиуранаты или карбонаты. Все эти способы включают операции фильтрации, промывки осадков на фильтре и последующую их сушку в соответствующей атмосфере [Collins, Emory D, Voit, Stewart L, and Vedder, Raymond James «Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials», United States: 2011, web. doi:10.2172/1024695]. Общим недостатком осадительных методов является образование больших объемов маточных и промывных растворов в виде РАО, требующих утилизации.

Для исключения указанных недостатков разработан способ по использованию прямой сушки и денитрации азотнокислого раствора актинидов с помощью микроволнового нагрева [OTeruhiko NUMAO, Hiroshi NAKAYASHIKI, Nobuyuki ARAI, Susumu MIURA, Yoshiharu TAKAHASHI «Results of Active Test of Uranium - Plutonium Co-denitration Facility at Rokkasho Ryprocessing Plant», Global 2007, Boise, Idaho, September 9-13, 2007, 238-244].

Данный способ включает в себя ряд таких последовательных операций:

1. Концентрирование смешанного раствора и его сушка при 120°С

2. Разложение (денитрация) расплава солей при 150°С

3. Кальцинация и отгонка остаточной влаги при 250°С и выше

4. Прокалка смеси и ее окисление.

Недостатками данного способа являются его многостадийность, необходимость перемещения емкости со смесью из одной печи в другую и требование дополнительного размола образующегося спека.

В качестве прототипа выбран способ получения твердых растворов актинидов [RU 2494479, опубликован 27.09.2013], согласно которому, азотнокислый раствор нитратов актинидов предварительно подогревают до 90°С, затем добавляют муравьиную кислоту в соответствующей пропорции, обеспечивая мольное соотношение нитрат иона-муравьиная кислота (1:3)-(1:4). Реакционная смесь плавно в течение 2 часов подвергается сушке при 120°С на воздухе. Анализ методом РФА подтвердил образование монофазной смеси формиатов актинидов (уранила и плутония). После прокаливания смеси формиатов при 400°С на выходе, согласно данным РФА, получается твердый раствор смешанных оксидов (U, Pu)O2.

К недостаткам способа по прототипу следует отнести опасность предварительного смешения и выдержки при повышенных температурах азотнокислых растворов актинидов с концентрированной муравьиной кислотой. Их взаимодействие протекает по схеме:

2HNO3+2НСООН→NO+NO2+2CO2+3H2O

2HNO3+3HCOOH→2NO+3CO2+4H2O

Из-за автокаталитического характера этих реакций может произойти неконтролируемое развитие процесса с образованием взрывоопасной газовой смеси, вследствие чего, после смешения компонентов процесс сушки реакционной смеси необходимо вести плавно до 2-х часов, что делает способ периодичным и малопроизводительным.

Техническая проблема, на решение которой направлено заявляемое изобретение, заключается в создании способа и устройства для производства монофазных сухих порошков солей актинидов, позволяющих, при компактности и простоте устройства, получать сухие порошки солей актинидов за одну стадию, при этом, обеспечивая повышение производительности, химической и ядерной безопасности процесса.

Для достижения указанного технического результата предложен способ получения монофазных порошков солей актинидов, который включает подачу азотнокислого актинидсодержащего раствора и муравьиной кислоты в цилиндрический обогреваемый реактор, измельчение полученного порошка, его выгрузку, отличающийся тем, что азотнокислый актинидсодержащий раствор и муравьиную кислоту непрерывно дозируют в верхнюю зону реактора, причем смешение реагентов происходит в тонкой пленке на теплообменной поверхности, где реакционную смесь непрерывно перемешивают лопастями ротора, при этом последовательно происходят процессы денитрации, образования соответствующих соединений, их сушка и измельчение, а также сбор самотеком сухих солей актинидов в бункере.

Согласно способу азотнокислый раствор с актинидами и муравьиную кислоту дозируют непрерывно в мольном соотношении нитрат-иона к формиат-иону (1:4,3)-(1:4,5), а температуру теплообменной поверхности поддерживают равной 140±5°С.

Также с целью достижения указанного технического результата предложено устройство для получения монофазных порошков солей актинидов. Предлагаемое устройство содержит вертикальный роторно-пленочный реактор, снабженный обогревателем и штуцерами для ввода реагентов и отвода отходящие газов, внутри которого расположен ротор, выполненный с возможностью вращения, с закрепленными по всей его длине лопастями. Штуцер ввода реагентов выполнен в виде тройника, а приемный бункер выполнен с возможностью присоединения к корпусу аппарата для уменьшения подсоса холодного воздуха во внутрь его и снабжен обогревателем.

Кроме того:

- ротор выполнен сварным с четырьмя лопастями, причем зазор между кромкой лопасти и стенкой составляет 0,5-1,5 мм;

- штуцер в виде тройника для подачи растворов и штуцер для отвода отходящей паро-газовой смеси расположены в верхней части реактора выше края лопастей.

Для осуществления способа используют ядерно- и взрыво-безопасное устройство, которое показано на фигуре 1, и содержит вертикальный цилиндрический реактор (1), обогреваемый нагревателем (2), штуцер в виде тройника (3) для раздельной подачи растворов и штуцер (4) для отвода паро-газовой смеси. Реактор (1) содержит ротор (5) с распределительным диском и лопастями, приемный бункер (6), снабженный нагревателем (7).

Использование предлагаемого способа получения монофазных солей актинидов и предлагаемого устройства для их получения обеспечивает:

- короткое время пребывания реагентов, дозируемых непрерывно, в условиях теплового воздействия с одновременным глубоким упариванием досуха, следствием чего является повышение производительности и безопасности процесса;

- компактность устройства и простота конструкции позволяет при необходимости его разобрать для осмотра и промывки внутренних поверхностей;

- ядерная безопасность обеспечивается за счет минимизации количества ядерных материалов в тонкой пленке внутри аппарата при масштабировании процесса и использовании растворов с высоким содержанием актинидов.

Способ осуществляется следующим образом:

азотнокислый актинидсодержащий раствор и муравьиная кислота с помощью насосов дозаторов подаются раздельно в реактор (1) через штуцер (3), который находится выше нагревателя (2), на диск ротора (5). Реакционная смесь под действием центробежной силы при вращении ротора (5) сбрасывается с диска ротора на нагретую поверхность реактора (1). Лопасти ротора (5) непрерывно перемешивают реакционную смесь по мере ее продвижения сверху вниз по теплообменной поверхности, обеспечивая получение и сбор самотеком сухих солей актинидов в бункере (6), снабженным нагревателем (7), и парогазовой смеси, которую отводят из реактора (1) через штуцер (4).

Пример 1.

Растворы уранилнитрата в 1 молярной HNO3 с концентрацией по урану 100 г/л и концентрированной муравьиной кислоты при комнатной температуре с помощью насосов дозаторов подают раздельно в реактор через штуцер-тройник, при этом обеспечивается мольное соотношение нитрат-ион/муравьиная кислота 1:3,6. Температура на стенке реактора - 142°С, температура на стенке приемного бункера - 145°С. Порошок сыпался в приемный бункер равномерно. По данным РФА порошок состоит из двух кристаллических фаз: 50 мас.% формиата гидрата (CH2O5U) и 50 мас.% водного формиата (C2H2O6U⋅H2O). Дифрактограмма порошка, полученного по примеру 1, представлена на фигуре 2, где: - соединение со структурой CH2O5U; - соединение со структурой C2H2O6U⋅Н2О.

Пример 2.

Растворы уранилнитрата в 1 молярной HNO3 с концентрацией по урану 100 г/л и концентрированной муравьиной кислоты при комнатной температуре с помощью насосов дозаторов подаются раздельно в реактор через штуцер-тройник, при этом обеспечивается мольное соотношение нитрат-ион/муравьиная кислота 1:4,0. Температура на стенке реактора - 140°С, температура на стенке приемного бункера - 130°С. Порошок сыпался в приемный бункер равномерно. По данным РФА порошок состоит из двух кристаллических фаз: 20 мас.% формиата гидрата (CH2O5U) и 80 мас.% водного формиата (C2H2O6U⋅Н2О). Дифрактограмма порошка, полученного по примеру 2, представлена на фигуре 3, где: - соединение со структурой CH2O5U; - соединение со структурой C2H2O6U⋅H2O.

Пример 3.

Растворы уранилнитрата в 1 молярной HNO3 с концентрацией по урану 100 г/л и концентрированной муравьиной кислоты при комнатной температуре с помощью насосов дозаторов подают раздельно в реактор через штуцер-тройник, при этом обеспечивается мольное соотношение нитрат-ион/муравьиная кислота 1:4,3. Температура на стенке реактора - 142°С, температура на стенке приемного бункера - 160°С. Порошок сыпался в приемный бункер равномерно. По данным РФА монофазный порошок состоит из 100 масс. % водного формиата (C2H2O6U⋅Н2О). Дифрактограмма порошка, полученного по примеру 3, представлена на фигуре 4, где: - соединение со структурой C2H2O6U⋅H2O. Фото полученного порошка представлено на Фиг. 5.

Пример 4.

Азотнокислый раствор в 0,845 молярной HNO3 с концентрацией по урану 91,1 г/л, по торию 9,0 г/л и концентрированной муравьиной кислоты при комнатной температуре с помощью насосов дозаторов подают раздельно в реактор через штуцер-тройник, при этом обеспечивается мольное соотношение нитрат-ион/муравьиная кислота 1:4,5. Температура на стенке реактора - 142°С, температура на стенке приемного бункера - 160°С. Порошок сыпался в приемный бункер равномерно и по данным РФА представлял собой соединение со структурой водного формиата и формулой (С2Н2О6(U,Th)⋅H2O). Дифрактограмма порошка, полученного по примеру 4, представлена на фигуре 6, где: - соединение со структурой C2H2O6U⋅Н2О.

1. Способ получения монофазных порошков солей актинидов, включающий подачу азотнокислого актинидсодержащего раствора и муравьиной кислоты в цилиндрический обогреваемый реактор, измельчение полученного порошка, его выгрузку, отличающийся тем, что азотнокислый актинидсодержащий раствор и муравьиную кислоту непрерывно дозируют в верхнюю зону реактора, причем смешение реагентов происходит в тонкой пленке на теплообменной поверхности, где реакционную смесь непрерывно перемешивают лопастями ротора, при этом последовательно происходят процессы денитрации, образования соответствующих соединений, их сушка и измельчение, а также сбор самотеком сухих солей актинидов в бункере.

2. Способ по п. 1, отличающийся тем, что актинидсодержащий раствор и муравьиную кислоту дозируют раздельно и непрерывно в мольном соотношении нитрат-ион и формиат-ион (1:4,3)-(1:4,5);

3. Способ по п. 1, отличающийся тем, что поддерживают температуру теплообменной поверхности 140±5°С.

4. Устройство для получения монофазных порошков солей актинидов, включающее вертикальный роторно-пленочный реактор, снабженный нагревателем, штуцерами для ввода реагентов и для отвода парогазовой фазы, внутри которого расположен ротор, выполненный с возможностью вращения, с закрепленными по всей его длине лопастями, отличающийся тем, что штуцер для ввода реагентов выполнен в виде тройника, а приемный бункер выполнен с возможностью присоединения к корпусу аппарата и снабжен нагревателем.

5. Устройство по п. 4, отличающееся тем, что ротор выполнен сварным с четырьмя лопастями, причем зазор между кромкой лопасти и стенкой составляет 0,5-1,5 мм.

6. Устройство по п. 4, отличающееся тем, что штуцер в виде тройника для подачи растворов и штуцер для отвода отходящей парогазовой смеси расположены в верхней части реактора выше края лопастей.



 

Похожие патенты:

Настоящее изобретение относится к композиции, наполненной актинидным порошком. Описана композиция для ядерного топлива, наполненная актинидным порошком, содержащая органическую матрицу и актинидный порошок или смесь актинидных порошков, отличающаяся тем, что в ней содержатся, по меньшей мере: пластифицирующее вещество, содержащее алкан, в котором цепь наиболее длинного радикала содержит по меньшей мере несколько десятков атомов углерода, и присутствующее в объемном содержании, составляющем от 20 до 70% по отношению к суммарному объему только органических соединений; связующее вещество, содержащее, по меньшей мере, полиолефиновый полимер, представляющий собой полиэтилен низкой плотности и/или полипропилен, и присутствующее в объемном содержании, составляющем от 20 до 50% по отношению к суммарному объему только органических соединений; диспергирующее вещество, содержащее карбоновую кислоту или ее соответствующие соли и присутствующее в объемном содержании, составляющем менее чем 10% по отношению к суммарному объему только органических соединений; причем вышеупомянутый актинидный порошок или вышеупомянутая смесь актинидных порошков составляют от 40 до 65 об.% по отношению к объему наполненной матрицы.
Изобретение относится к радиохимической технологии и может быть использовано при переработке отработавшего ядерного топлива и производстве смешанного уран-плутониевого топлива.
Изобретение относится к ядерному топливу, в частности к топливу энергетического реактора-размножителя на быстрых нейтронах с активной зоной в виде солевого расплава. Топливная композиция содержит (мас.%): хлорид калия - 24 + хлорид магния - 16 + тетрахлорид тория - 30 + трихлорид плутония - 30 и при рабочей температуре 550-560°С имеет плотность 2,53 г/см3.

Изобретение относится к атомной промышленности и предназначено для процесса извлечения порошковых частиц ядерного топлива при переработке некондиционных и необлученных тепловыделяющих элементов (твэлов) дисперсионного типа с оболочками и матрицей сердечника из алюминия или его сплавов на стадии их изготовления.
Изобретение относится к способам получения смешанного уран-плутониевого ядерного топлива. В заявленном способе раствор нитратов металлов (0,3-5 моль/л HNO3) смешивают с раствором восстановителя и/или комплексообразующего реагента и подают через форсунку аппарата аэрозольной сушки, обеспечивающего прогрев реакционной смеси выше температуры разложения реагентов и образующихся комплексов металлов (>400°С).

Изобретение относится к способу и устройству для получения сферических частиц делящегося и/или воспроизводящего материала, используемого в ядерных реакторах. Способ включает формирование капель заливочного раствора в аммиачную осадительную ванну для образования микросфер, старение, промывку полученных микросфер в растворе аммиака, сушку и термообработку.
Изобретение относится к области ядерной энергетики, в частности к способам получения смешанного уран-плутониевого ядерного топлива на базе диоксидов UO2 и PuO2, получившего название МОХ (Mixed-Oxide) топлива.
Изобретение относится к ядерному топливу, в частности к топливу энергетического реактора-размножителя на быстрых нейтронах с активной зоной в виде солевого расплава.

Изобретение относится к области ядерных технологий и решает задачу создания ядерного топлива, обеспечивающего одновременное протекание в активной зоне ядерного реактора реакций деления и синтеза ядер и генерирование энергии и нейтронов деления и синтеза.

Изобретение может быть использовано в системах нейтрализации отработавших газов двигателей внутреннего сгорания. Электрохимический реактор (70) содержит протонно-проводящий слой твердого электролита, анодный слой, катодный слой и устройство управления по току.

Изобретение относится к области выращивания кристаллов. Предлагается кластер установок для выращивания кристаллов из раствора, содержащий несколько кристаллизационных установок 1, которые объединены в отдельные блоки по несколько установок, например по десять, которые образуют кластеры нижнего уровня 11, каждая из кристаллизационных установок 1 каждого блока кластера нижнего уровня 11 подключена к блоку индикации и управления 13 кристаллизационными установками 1 нижнего уровня 11, снабженному одним или более контроллером 14 и одним или более средством индикации функционирования 15 кристаллизационных установок блока, входящих в кластер, и коммутатором 16 нижнего уровня, совокупность кластеров нижнего уровня 11 образует кластер верхнего уровня 12, содержащий, например, десять кластеров нижнего уровня 11, каждый из коммутаторов 16 блока индикации и управления 13 кристаллизационных установок 1 нижнего уровня 11 подключен к коммутатору 17 верхнего уровня, который подключен к центральному серверу 18 и автоматизированным рабочим местам 19, служащим для загрузки и редактирования технологической программы в каждую кристаллизационную установку 1 и контроля за функционированием кластеров нижнего уровня 11, входящих в состав кластера верхнего уровня 12 любой из кристаллизационных установок 1, входящих в кластер 11.

Устройство (1) очистки отработавшего газа включает в себя линию (L11-1) отработавшего газа, по которой протекает отработавший газ (G11-1) сгорания, выпущенный из электроэнергетической установки (10-1), линию (L11-2) отработавшего газа, по которой протекает второй отработавший газ (G11-2) сгорания, выпущенный из второй электроэнергетической установки (10-2), отводящую линию (L12-1) и (L12-2) отработавшего газа, обеспеченную посредством ответвления от линии (L11-1) и (L11-2) отработавшего газа, выпускающую часть отработавших газов (G11-1) и (G11-2) сгорания в качестве отводимых отработавших газов (G12-1) и (G12-2) сгорания, блок (120) удаления оксида азота, удаляющий оксид азота, содержащийся в объединенном отработавшем газе (G21) сгорания, в котором объединяют отработавшие газы (G11-1) и (G11-2) сгорания, встроенный котел-утилизатор (12) отходящего тепла, утилизирующий отходящее тепло от объединенного отработавшего газа (G21) сгорания, и блок (13) извлечения CO2, извлекающий CO2, содержащийся в объединенном отработавшем газе (G21) сгорания, с помощью жидкости, абсорбирующей CO2.

Изобретение относится к газовой промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений.

Изобретение относится к способу получения кислорода путем адсорбции из потока атмосферного воздуха, предусматривающему использование VPSA-установки, содержащей по меньшей мере один адсорбер, причем каждый адсорбер подвергается одному и тому же циклу изменения давления, включающему следующие стадии: a) получение первого потока газа, характеризующегося содержанием кислорода C1, при загрузке потока атмосферного воздуха выше по потоку относительно адсорбера, b) получение второго потока газа, характеризующегося содержанием кислорода C2<C1, c) получение третьего потока газа, характеризующегося содержанием кислорода C3<C2<C1, при одновременном извлечении потока отходов, обогащенного азотом, d) элюирование адсорбера, из которого выпустили три потока газа, полученных на стадиях a), b) и c), посредством исключительно второго потока газа, полученного на стадии b), e) повторное повышение давления в адсорбере, который подвергался элюированию на стадии d), последовательно по меньшей мере с помощью двух потоков, первого и второго потоков, обеспечивающих повторное повышение давления, характеризующихся возрастающим содержанием кислорода, при этом первый поток, обеспечивающий повторное повышение давления, является третьим потоком газа, полученным на стадии c), и второй поток, обеспечивающий повторное повышение давления, является вторым потоком газа, полученным на стадии b).

Изобретение может быть использовано при термической очистке питательной воды для восполнения ее потерь в котлах на тепловых электростанциях, а также на производствах и в технологиях с широким диапазоном изменения потребности в термически очищенной воде при пиковых нагрузках.

Изобретение относится к конструкции выпарных аппаратов и может быть использовано для концентрирования радиоактивных растворов. Предложен выпарной аппарат, содержащий вынесенную греющую камеру, сепаратор с брызгоуловителем, нижнюю питающую камеру, циркуляционную трубу, соединяющую нижнюю питающую камеру с сепаратором, верхнюю часть циркуляционной трубы, плавно изогнутую под углом 90° и соединенную с сепаратором через патрубок, имеющий продолжение внутри сепаратора в виде направляющей потока раствора вниз.

Изобретение относится к способам адсорбции хлорида водорода (HCl) из выходящего газа регенерации. Указанный выходящий из зоны регенерации газ регенерации охлаждают.

Изобретение относится к установкам низкотемпературной дефлегмации с ректификацией и может быть использовано в газовой промышленности для выделения углеводородов С2+ из магистрального природного газа.

Изобретение относится к медицинской технике, а именно к мобильной установке для получения из атмосферного воздуха кислорода медицинского газообразного и может быть использована, например, в военно-медицинских организациях и на этапах медицинской эвакуации при транспортировании автомобильным, железнодорожным и воздушным транспортом.
Наверх