Способ компенсации помех и радиолокационная станция для его осуществления

Изобретения относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС) для защиты от импульсных, в том числе ответных, помех. Достигаемый технический результат - компенсация импульсной помехи, при сохранении условий приема сигналов, отраженных от цели. Указанный технический результат достигается тем, что в способе компенсации помех радиолокационной станции, основанном на приеме сигналов основным и дополнительным каналами, на настройке параметров автокомпенсатора, обеспечивающих вычитание сигналов, принимаемых с направления на источник помех, в процессе работы РЛС при обзоре направления выключают на очередной период излучение зонда, принимаемые в этом периоде сигналы считают ответной помехой, настройку параметров автокомпенсатора выполняют по этим сигналам, после чего осуществляют обзор направления. Технический результат достигается также тем, что в радиолокационную станцию для осуществления способа компенсации помех, содержащую основную антенну, дополнительную антенну, основной приемо-передающий и дополнительный приемный каналы, автокомпенсатор, синхронизатор, вход-выход основной антенны и выход дополнительной соединены с входами соответствующих каналов, выход основного канала и первый выход дополнительного канала соединены с первым и вторым входами автокомпенсатора соответственно, первый выход синхронизатора соединен с третьим входом автокомпенсатора, введены устройство формирования зондирующего сигнала (УФ) и устройство стробирования, первый вход которого соединен со вторым выходом дополнительного канала, второй выход синхронизатора соединен со вторым входом устройства стробирования и с входом УФ, выход которого соединен со вторым входом основного канала, а выход устройства стробирования соединен с четвертым входом автокомпенсатора. 2 н.п. ф-лы, 2 ил.

 

Заявляемые технические решения относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС) для защиты от импульсных, в том числе, ответных помех.

Большие проблемы работе РЛС создают преднамеренные активные, в том числе, импульсные помехи [Справочник. Радиотехнические системы. Основы построения и теория. Под редакцией Я.Д. Ширмана гл. 6.4.1, с. 79], воздействующие на РЛС по главному лучу и боковым лепесткам диаграммы направленности антенны (ДНА) [Защита от радиопомех, под ред. М.В. Максимова, М. Сов. Радио, 1976 г, с. 60]. Импульсные помехи энергетически более выгодны для постановщика, так как при небольшой средней мощности импульсная мощность помехи может значительно превышать уровень непрерывной помехи. В результате действия импульсных помех происходят ложные обнаружения целей. При достаточно большой мощности помехи она обнаруживается не только в главном луче, но и при приеме с бокового направления боковыми лепестками ДНА, в результате чего при частоте следования импульсов, значительно превышающей частоту зондирования, создается большое число ложных сигналов (отметок) хаотических или неподвижных, в простейшем случае, либо движущихся с установленной постановщиком помехи скоростью, в случае синхронной ответной помехи. Во всех случаях импульсы помехи воспринимаются как отраженные от целей, поэтому по ним выполняют захват и завязку трассы [С.З. Кузьмин - Основы проектирования систем цифровой обработки радиолокационной информации стр. 109] с последующим ее сбросом, в случае несинхронной помехи, или ведением ложной трассы, в случае синхронной помехи с изменяющейся задержкой. В результате ответная помеха приводит к перегрузке устройств РЛС.

Известен способ распознавания сигналов синхронных ответных помех [патент RU №2562449], в котором решаемой проблемой является распознавание ответной помехи. Проблема решается тем, что излучается зондирующий сигнал пониженной мощности (ложный зонд), при котором отраженный сигнал от реальной цели будет много ниже порога обнаружения. В то же время постановщик ответной помехи излучает усиленную копию ложного зонда и поэтому обнаруженные в это время сигналы считают сигналами синхронной ответной помехи.

Суть способа состоит в том, что при излучении ложного зонда постановщик синхронной ответной помехи, находящийся на предельной дальности (не досягаемой для средств поражения) для подавления РЛС, в том числе в области боковых лепестков диаграммы направленности антенны (ДНА), излучает усиленную копию этого сигнала, в то время как уровень отраженного ложного зонда от реальной цели будет ниже порога обнаружения. Следовательно, после излучения ложного зонда превысить порог обнаружения может только синхронная ответная помеха. Это и является признаком, по которому эта помеха может быть распознана.

Недостаток известного способа состоит в том, что необходимо изменять уровень мощности зонда и, кроме того, при наложении более мощного импульса помехи, принимаемого с бокового направления на отраженный сигнал от цели, принимаемый главным лучом, отраженный сигнал будет принят за помеху. Чтобы выделить отраженный сигнал из смеси с помехой необходимо ее компенсировать.

Известен наиболее близкий к предлагаемому способ компенсации непрерывных помех [Справочник. Радиотехнические системы. Основы построения и теория. Под редакцией Я.Д. Ширмана, гл. 25.4.2, с. 436], основанный на приеме сигналов двумя приемными каналами - основным и дополнительным, автоматической настройке параметров автокомпенсатора, обеспечивающих вычитание сигналов, принимаемых с направления на постановщик помехи. Это достигается тем, что в процессе управления в автокомпенсаторе происходит выравнивание амплитуды и фазы только коррелированной части сигналов основного и дополнительного каналов с последующим их вычитанием. Исключение возможности подавления отраженного от цели сигнала при этом достигается за счет отличительного признака сигнала и помехи, заключающегося в различной протяженности во времени непрерывной помехи и сравнительно коротких отраженных от цели сигналов. Благодаря этой разнице подстройка параметров автокомпенсатора на помеху происходит за время, большее чем длительность отраженного от цели сигнала. Поэтому автокомпенсатор не может компенсировать отраженный от цели сигнал, но при этом автокомпенсатор не может компенсировать и импульсные помехи.

Известна наиболее близкая к предлагаемой РЛС [там же гл. 25.4.3 с. 436] (фиг. 1), содержащая две антенны, основную 1 и дополнительную 2, два канала - основной приемо-передающий канал (ОК) 3 и дополнительный приемный канал (ДК) 4, автокомпенсатор 5 и синхронизатор 6, выход основной антенны 1 соединен с входом ОК 3, выход дополнительной антенны 2 соединен с входом ДК 4, выходы ОК 3 и ДК 4 соединены с первым и вторым входами автокомпенсатора 5 соответственно, выход синхронизатора 6 соединен с третьим входом автокомпенсатора.

РЛС, осуществляющая известный способ, работает следующим образом. Непрерывная помеха, принятая основной антенной 1 и антенной 2, поступает через основной канал 3 и дополнительный канал 4 на первый и второй входы автокомпенсатора 5 соответственно. В автокомпенсаторе происходит автоматическое выравнивание амплитуды и фазы помехи, принятой основным и дополнительным каналами, и их вычитание. При этом на выходе автокомпенсатора 5 происходит компенсация помехи. Синхронизатор 6 задает последовательность периодов повторения зондирующего импульса.

Постоянную времени срабатывания автокомпенсатора выбирают много большей, чем длительность отраженного зондирующего импульса, для того, чтобы автокомпенсатор за время действия отраженного сигнала не успевал его скомпенсировать. Это исключает возможность подавления отраженного сигнала от цели, но это и не позволяет компенсировать импульсную помеху, поскольку ее протяженность во времени совпадает с протяженностью сигнала.

Поэтому автокомпенсаторы не применяют для компенсации импульсных помех.

Недостаток наиболее близкого известного способа состоит в том, что способ не обеспечивает компенсации импульсных помех.

Таким образом, решаемой технической проблемой (техническим результатом) является компенсация импульсной помехи, при исключении компенсации сигналов, отраженных от цели.

Техническая проблема компенсации импульсной помехи решается на основе распознавания импульсов помехи по признакам, отличающим импульсы помехи от сигналов, и настройке автокомпенсатора только на распознанные импульсы помехи.

Поставленная проблема (технический результат) решается тем, что в способе компенсации помех радиолокационной станции, основанном на приеме сигналов основным и дополнительным каналами, на настройке параметров автокомпенсатора, обеспечивающих вычитание сигналов, принимаемых с направления на источник помех, согласно изобретению в процессе работы РЛС при обзоре направления выключают на очередной период излучение зонда, принимаемые в этом периоде сигналы считают ответной помехой, настройку параметров автокомпенсатора выполняют по этим сигналам, после чего осуществляют обзор направления.

Поставленная проблема (технический результат) решается тем, что в радиолокационную станцию для осуществления способа компенсации помех содержащую: основную антенну, дополнительную антенну, основной приемо-передающий и дополнительный приемный каналы, автокомпенсатор, синхронизатор, вход-выход основной антенны и выход дополнительной соединены с входами соответствующих каналов, выход основного канала и первый выход дополнительного канала соединены с первым и вторым входами автокомпенсатора соответственно, первый выход синхронизатора соединен с третьим входом автокомпенсатора согласно изобретению введены устройство формирования зондирующего сигнала (УФ) и устройство стробирования, первый вход, которого соединен со вторым выходом дополнительного канала, второй выход синхронизатора соединен со вторым входом устройства стробирования и с входом УФ, выход которого соединен со вторым входом основного канала, а выход устройства стробирования соединен с четвертым входом автокомпенсатора.

Суть работы способа состоит в том, что в начале обзора нового направления (при перебросе луча в новое направление) по сигналу синхронизатора, работающего по заданной программе, с помощью УФ на очередной период выключают излучение зонда. Постановщик помех продолжает излучать ответную помеху на основании принятого сигнала зонда предыдущего периода. Отраженных сигналов в периоде пропуска зонда нет, поэтому все принятые сигналы считают ответной помехой. Одновременно с выключением излучения зонда по команде синхронизатора включают устройство стробирования, автокомпенсатор под стробами настраивает параметры на принимаемую помеху до ее подавления. В следующем периоде синхронизатор с помощью УФ включает излучение зонда и выключает устройство стробирования. В этом периоде параметры автокомпенсатора не меняются и остаются настроенными только на помеху. При этом компенсации отраженных от цели сигналов не происходит из-за того, что амплитудно-фазовые соотношения у них иные, чем у помехи, так как угловые положения цели и помехи различны

Изобретения иллюстрируется чертежами:

фиг. 1 - схема РЛС для осуществления способа - прототипа;

фиг. 2 - схема РЛС для осуществления заявленного способа;

Заявленная РЛС для осуществления способа компенсации помех (фиг. 2) содержит основную антенну 1 и дополнительную антенну 2, основной приемо-передающий канал 3 и дополнительный приемный канал 4, автокомпенсатор 5, синхронизатор 6, устройство стробирования 7, устройство формирования зондирующего сигнала 8, вход-выход антенн 1 и выход антенны 2 соединены соответственно с входами каналов ОК 3 и ДК 4, выход ОК 3 соединен с первым входом автокомпенсатора 5, первый выход ДК 4 соединен со вторым входом автокомпенсатора 5, второй выход ДК 4 соединен с первым входом устройства стробирования 7, выход которого соединен с четвертым входом автокомпенсатора 5, первый выход синхронизатора 6 соединен третьим входом автокомпенсатора 5, а второй выход соединен со вторым входом устройства стробирования 7 и входом УФ 8, выход которого соединен со вторым входом ОК 3.

Рассмотрим более подробно осуществимость способа (фиг. 2) на конкретном примере.

По сигналу синхронизатора 6, работающего по заданной программе, при обзоре нового направления (при перестройке луча) с помощью УФ 8 выключают излучение зонда, одновременно синхронизатор 6 выдает команду на устройства стробирования 7 и включает его. Постановщик помех продолжает излучать копию зонда предыдущего периода, которую принимает боковыми лепестками основная антенна 1 и дополнительная антенна 2. Сигналы, принятые основной 1 и дополнительной 2 антеннами, поступают на входы каналов ОК 3 и ДК 4 соответственно. С выхода канала ОК 3 и первого выхода канала ДК 4 сигналы поступают на первый и второй входы автокомпенсатора 5 соответственно, сигналы со второго выхода ДК 4 поступают на второй вход устройства стробирования 7, который формирует строб во время приема импульса помехи, включающий автокомпенсатор 5 на это время. Под стробом в импульсном режиме в этом периоде происходит подстройка параметров автокомпенсатора 5 от строба к стробу таким образом, чтобы в направлении на постановщика помех происходила максимально возможная компенсация сигналов, принятых боковыми лепестками ДНА основной антенны. В следующем периоде по команде от синхронизатора 6 включают с помощью УФ излучение зонда для осмотра направления и выключают устройство стробирования 7. Параметры автокомпенсатора в этом периоде не изменяются. Благодаря этому принимаемые сигналы ответной помехи в этом периоде компенсируются, а отраженные сигналы, принятые главным лучом основной антенны, не компенсируются, так как из-за углового разноса цели и постановщика помехи амплитудно-фазовые соотношения отраженных сигналов не совпадают с таковыми импульсов помехи, на которые настроен автокомпенсатор.

Таким образом решается проблема компенсации автокомпенсатором импульсных помех, принятых с направления на постановщик помех. Причинно-следственная связь между поставленной проблемой, состоящей в компенсация импульсной помехи и сохранении условий приема сигналов, отраженных от цели, и признаками изобретения состоит в том, что в формулу изобретения включен признак «в процессе работы РЛС при обзоре направления выключают на очередной период излучение зонда, принимаемые в этом периоде сигналы считают ответной помехой, настройку параметров автокомпенсатора выполняют по этим сигналам, после чего осуществляют обзор направления», что обеспечивает компенсацию импульсной помехи и сохранение условий приема сигналов отраженных от цели.

1. Способ компенсации помех радиолокационной станции (РЛС), основанный на приеме сигналов основным и дополнительным приемными каналами, на настройке параметров автокомпенсатора, обеспечивающих вычитание сигналов, принимаемых с направления на источник помех, отличающийся тем, что в процессе работы РЛС при обзоре направления выключают на очередной период излучение зонда, принимаемые в этом периоде сигналы считают ответной помехой, настройку параметров автокомпенсатора выполняют по этим сигналам, после чего осуществляют обзор направления.

2. Радиолокационная станция для осуществления способа компенсации помех, содержащая основную приемную антенну, дополнительную приемную антенну, основной приемо-передающий и дополнительный приемный каналы, автокомпенсатор, синхронизатор, первый выход синхронизатора соединен с третьим входом автокомпенсатора, вход-выход основной приемной антенны и выход дополнительной приемной антенны соединены с входами соответствующих приемных каналов, выход основного приемного канала и первый выход дополнительного приемного канала соединены с первым и вторым входами автокомпенсатора соответственно, отличающаяся тем, что введены устройство формирования зондирующего сигнала (УФ) и устройство стробирования, первый вход которого соединен со вторым выходом дополнительного приемного канала, второй выход синхронизатора соединен со вторым входом устройства стробирования и с входом УФ, выход которого соединен со вторым входом основного приемного канала, а выход устройства стробирования соединен с четвертым входом автокомпенсатора.



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано для формирования сигнально-помеховой обстановки в интересах обоснования характеристик и параметров радиоэлектронных средств (РЭС) для оценки их электромагнитной совместимости и помехозащищенности.

Изобретение относится к области автоматизированных информационных систем, а именно к защите информации в информационных системах, и может быть использовано для обнаружения информационно-технических воздействий (ИТВ) на информационные системы.

Изобретение относится к способу функционального подавления беспилотного летательного аппарата (БПЛА). Для реализации способа определяют координаты местоположения БПЛА, доставляют при помощи пускового устройство в область расположения БПЛА контейнер с элементами функционального подавления, осуществляют генерацию серии сверхкоротких СВЧ радиоимпульсов для нарушения работоспособности радиоэлектронных элементов БПЛА, после полного разряда источника электропитания осуществляют подрыв заряда самоликвидации контейнера для образования облака красителя в целях образования непрозрачной пленки на поверхности элементов БПЛА и в целях образования поля поражающих элементов, которые приводят к физическому повреждению БПЛА.

Изобретение относится к способу функционального подавления беспилотных летательных аппаратов. Для реализации способа обнаруживают беспилотный летательный аппарат, в область на расстоянии 50-100 метров от него при помощи пускового устройства доставляют патрон, выполненный с возможностью генерации серии сверхкоротких сверхвысокочастотных радиоимпульсов в определенном диапазоне частот, производят генерацию этих импульсов в сторону беспилотного летательного аппарата до полного разряда источника электропитания, после этого выполняют самоуничтожение патрона путем его подрыва для создания поля поражающих элементов для физического повреждения беспилотного летательного аппарата и его уничтожения.

Изобретение относится к области создания искусственных помех для маскировки электромагнитных каналов утечки речевой информации. Технический результат – одновременное обеспечение маскировки электромагнитного канала утечки речевой информации и выполнение требований к электромагнитной совместимости радиоэлектронных средств в цифровых радиолиниях связи при заданных энергетических характеристиках радиосистемы передачи и вероятности ошибочного приема.

Изобретение относится к радиоэлектронному подавлению систем управления высокоточным оружием и может быть использовано при разработке комплексов защиты воздушных и наземных объектов, в основу которых положено использование когерентных помех, создаваемых из двух точек пространства.

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств (ОЭС) от мощного лазерного излучения.
Изобретение относится к области обеспечения устойчивости функционирования лазерных средств дальнометрирования в условиях действия оптических помех с фиксированной задержкой по времени и может быть использовано в технике, где используются различные излучатели.

Изобретение относится к области радиотехники и может быть использовано при разработке средств радиоэлектронного подавления приемных устройств навигационной аппаратуры потребителей глобальных навигационных спутниковых систем (ГНСС), в частности, размещаемых на кораблях, самолетах, крылатых ракетах, беспилотных летательных аппаратах, в системах высокоточного оружия и т.д.

Изобретение относится к области радиотехники и может быть использовано для создания перспективных цифровых радиоустройств с программируемой архитектурой в условиях существования побочных электромагнитных полей и наводок для обеспечения конфиденциальности речевой радиосвязи.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях разведки огневых позиций противника. Достигаемый технический результат – повышение точности определения времени сопровождения цели.

Использование: для подповерхностной радиолокации. Сущность изобретения заключается в том, что восстановление радиоголограмм подповерхностных объектов, находящихся в средах с неровной поверхностью, включает в себя ступенчатое изменение сигнала в заданном диапазоне частот с равномерным шагом в диапазоне где kmin=0,72; kmax=0,81; D - диаметр антенны; c - скорость света, количество отдельных частот в диапазоне от fmin до fmax не менее пяти, автоматическое выравнивание амплитудно-частотной характеристики, при этом создается цифровая карта рельефа неровной поверхности среды с использованием датчика глубины, позволяющего измерять расстояние, соответствующее каждому пикселю получаемого датчиком глубины оптического изображения, рассчитывается радиоголограмма поверхности с использованием полученного рельефа неровной поверхности среды, рассчитывается разностная радиоголограмма (разность между экспериментальной и расчетной радиоголограммами), по разностной радиоголограмме вычисляется радиоизображение подповерхностного объекта методом обратного распространения.

Изобретение относится к методам и средствам ближней радиолокации нелинейно-рассеивающих радиоэлектронных объектов, а именно, к методам обнаружения объектов беспроводных сетей передачи информации (БСПИ), скрытых в приповерхностных слоях естественных и искусственных сред и находящихся в пассивном режиме.

Изобретение относится к области нелинейной радиолокации и может быть использовано при разработке нелинейных радиолокаторов (НРЛ) ближнего действия, осуществляющих дистанционное обнаружение на дальностях порядка сотен метров объектов искусственного происхождения, к которым относятся объекты военного назначения.

Изобретение относится к области радиотехники, может быть использовано в системах радиоконтроля, а именно - для создания преднамеренных помех любого типа в реальном времени, в том числе, имитационных помех.
Изобретение относится к классу создания искусственных помех и может быть использовано в конфликте противоборствующих сторон для повышения эффективности зенитно-ракетных комплексов (ЗРК) при поражении воздушных элементов противостоящей стороны.

Изобретения относятся к области радиолокации и могут быть использованы для совершенствования средств управления (СУ) зенитно-ракетных комплексов или систем. Достигаемым техническим результатом является увеличение дальности обнаружения целей СУ, повышение помехозащищенности от пассивных помех.

Изобретения относятся к области радиолокации и могут быть использованы для защиты радиолокационных станций (РЛС) от малоразмерных беспилотных летательных аппаратов (БПЛА).

Изобретение относится к конструкции досмотровых рамок, предназначенных для обнаружения взрывчатых веществ (ВВ) и других запрещенных предметов на теле человека в местах большого скопления людей в аэропортах, морских и речных вокзалах, театрах, стадионах и пр.

Домашняя система безопасности, установленная в ограждении, окне или двери и содержащая датчик (3) управляемого магнитного поля, соединенный с антенной (4), выполненной в виде отдельного электрода таким образом, что упомянутый датчик измеряет возмущения магнитного поля вокруг упомянутой антенны, при этом датчик управляемого магнитного поля выполнен с возможностью обнаруживать возмущение в магнитном поле, выявляемое его антенной, устанавливать присутствие человека в зависимости от мощности возмущения и отправлять предупреждение о присутствии человека.

Изобретения относятся к области радиолокации и могут быть использованы в радиолокационных станциях (РЛС) для защиты от импульсных, в том числе ответных, помех. Достигаемым техническим результатом является компенсация импульсной помехи, при сохранении условий приема сигналов, отраженных от цели.
Наверх