Система регистрации динамического давления

Изобретение относится к измерительной технике и может использоваться при исследовании поведения конструкционных материалов и взрывчатых веществ в режимах низкоскоростных соударений со скоростями от 10 м/с до 100 м/с в диапазоне 1-100 кбар. Техническим результатом является повышение точности измерений и увеличение времени регистрации процессов. Система регистрации динамического давления содержит манганиновый датчик давления, регистратор сигналов, передающий модуль, включающий в себя дифференциальный усилитель и генератор тока. Дополнительно введен приемный модуль, включающий в себя преобразователь AC/DC, магистральный приемник, усилитель. В передающий модуль дополнительно введен разностный усилитель, драйвер линии и источник опорного напряжения, при этом генератор тока выполнен прецизионным. 1 ил.

 

Изобретение относится к измерительной технике и может использоваться при исследовании поведения конструкционных материалов и взрывчатых веществ в режимах низкоскоростных соударений со скоростями от 10 м/с до 100 м/с в диапазоне 1-100 кбар.

Известна схема регистрации давления [А.Г. Иванов, В.А. Огородников. Способ измерения параметров ударной волны. Авторское свидетельство SU 934792, G01L 23/00, опубликовано 15.06.1993 Бюл. №22].

Известное устройство содержит пьезорезистивный датчик и дополнительно емкостной, состоящий из диэлектрической пленки и электродов. Датчики располагаются в исследуемой среде, измеряемые параметры фиксируются осциллографом.

Недостатками известного устройства являются низкая помехоустойчивость, приводящая к снижению точности измерений, и невозможность передачи сигналов от удаленных объектов.

Наиболее близким по технической сущности к заявляемому изобретению и выбранным в качестве прототипа является схема для регастрации профилей давления с применением манганиновых датчиков [см. Г.И. Канель, Черноголовка, Препринт, Институт хим. физики. Применение манганиновых датчиков для измерения давлений ударного сжатия конденсированных сред, 1973 г. (рис. 3, с. 4)].

Известное устройство содержит дифференциальный усилитель, импульсный источник тока для запитки датчика (генератор), схему синхронизации и балластное сопротивление. На входы усилителя подается сигнал, снимаемый с датчика, и сигнал, снимаемый с эквивалентного датчика сопротивления. В дифференциальном усилителе производится вычитание сигналов, разностный сигнал подается на вход регистратора сигналов (осциллографа). Импульсная запитка манганиновых датчиков осуществляется токами величиной 5-10 А и длительностью несколько десятков микросекунд.

При этом общим с заявляемым изобретением является то, что в схеме применяется манганиновый датчик давления, регистратор сигналов, передающий модуль, включающий в себя дифференциальный усилитель, входы которого соединены с первым и вторым выходами манганинового датчика давления, второй выход, которого заземлен, и генератор тока.

Недостатками известного устройства, принятого за прототип, являются:

- большие токи запитки датчиков, которые приводят к деградации материала датчика при регистрации длительных процессов, что приводит к увеличению погрешности измерения;

- низкая помехоустойчивость в условиях сильных электромагнитных помех, что приводит к снижению точности измерений;

- невозможность регистрации длительных процессов,. из-за разрушения датчиков под действием больших токов;

- необходимость применения схемы синхронизации для, запуска регистратора, что существенно усложняет систему регистрации;

- трудности с передачей сигналов от удаленных объектов.

Технической проблемой регистрации динамического давления при низкоскоростных соударениях является необходимость получения более достоверной картины быстропротекающих процессов.

Техническим результатом настоящего изобретения является повышение точности измерений при увеличений времени регистрации процессов.

Кроме того, дополнительным техническим результатом, обеспечиваемым изобретением, являются упрощение аппаратуры для регистрации динамического давления и возможность передачи сигналов на значительное расстояние.

Технический результат изобретения обеспечивается тем, что в устройстве, содержащем манганиновый датчик давления, регистратор сигналов, передающий модуль, включающий в себя дифференциальный усилитель, входы которого соединены с первым и вторым выходами манганинового датчика давления, второй выход которого заземлен, и генератор тока, согласно изобретению дополнительно введен приемный модуль, включающий в себя преобразователь AC/DC, вход которого подключен к питающей сети, магистральный приемник, усилитель, а в передающий модуль дополнительно введен разностный усилитель, драйвер линии и источник опорного напряжения, выход которого соединен с первым входом разностного усилителя, второй вход которого соединен с выходом дифференциального усилителя, выход разностного усилителя соединен с входом драйвера линии, выходы которого соединены с соответствующими входами магистрального приемника приемного модуля, выход которого соединен со входом усилителя, выход которого соединен с входом регистратора сигналов, выход преобразователя AC/DC соединен с входом генератора тока, выход которого соединен с первым входом манганинового датчика давления, при этом генератор тока выполнен прецизионным.

Уменьшение тока запитки манганинового датчика от прецизионного генератора тока, приводит к повышению точности измерений и возможности регистрации длительных процессов за счет введения в конструкцию разностного усилителя, драйвера линии, магистрального приемника и усилителя, которые обеспечивают заданный коэффициент усиления сигнала и динамический диапазон.

Применение четырехпроводной схемы запитки датчика, дифференциальных усилителей и дифференциальных линий связи, типа «витая пара», между передающим и приемным модулями, приводит к повышению помехоустойчивости и надежности регистратора, и тем самым позволяет повысить точность измерений.

Система регистрации динамического давления (СРДД) выполнена в функциональном единстве передающего и приемного модулей, связанных посредством одной дифференциальной линии связи, типа «витая пара», позволяет разместить передающий модуль вблизи от исследуемого объекта (датчика), внутри труднодоступных или закрытых полостях исследуемого объекта и передавать для регистрации информацию в режиме реального времени по дифференциальной линии связи от передающего в приемный модуль, находящийся на значительном расстоянии.

Исключение системы синхронизации из системы регистрации приводит к упрощению регистрирующей аппаратуры.

Применение в совокупности элементов системы позволяет обеспечить требуемые технические характеристики системы регистрации динамического давления.

На чертеже представлен вариант функциональной блок-схемы СРДД.

СРДД состоит из передающего модуля 1 и приемного модуля 2 и содержит следующие блоки: AC/DC преобразователь 3 (источник питания, преобразующий переменное напряжение в постоянное), прецизионный генератор тока 4, манганиновый датчик 5, дифференциальный усилитель 6, источник опорного напряжения 7, разностный усилитель 8, драйвер линии 9, магистральный приемник 10, усилитель 11 и регистратор сигналов -осциллограф 12.

СРДД работает следующим образом.

Устройство работает в диапазоне давлений от 1 до 100 кбар. При подаче напряжения питания ≈220 В на схему СРДД AC/DC преобразователь 3 преобразует переменное напряжение в постоянное ±15 В и запитывает все функциональные блоки СРДД. Прецизионный генератор тока 4 преобразует напряжение в ток, необходимый для запитки манганинового датчика давления 5, и запитывает датчик по четырехпроводной схеме. Сигнал с манганинового датчика 5 поступает на высокоомные входы дифференциального усилителя 6, усиливающий сигнал с датчика 5, с выхода которого поступает на разностный усилитель 8, с помощью которого из сигнала с датчика 5 вычитается постоянная составляющая сигнала, которая выставляется на источнике опорного напряжения 7. Разностный сигнал, величина которого является функцией давления, усиленный драйвером линии 9 и преобразованный в дифференциальный симметричный сигнал, по дифференциальной линии, типа «витая пара», длиной до 100 м, поступает на вход магистрального приемника 10, преобразуется в униполярный сигнал, усиливается выходным усилителем 11 и поступает на вход осциллографа 12.

При постоянном токе Iд запитки датчика амплитуда сигнала на осциллографе составит:

ΔUд=Iдλ⋅σ⋅Rд

где - коэффициент пьезорезистивности датчика;

σ - ударно-волновое напряжение;

Rд - сопротивление манганинового датчика.

При создании опытного образца СРДД были применены в качестве:

- усилителей - микросхемы AD8079;

- драйверов линии - микросхемы AD815;

- магистральных приемников - микросхемы МАХ4444;

- осциллограф типа АКИП.

Проведенные экспериментальные исследования опытного образца, показали, что СРДД, выполненный на указанной выше элементной базе, позволяет производить точные и надежные измерения динамического давления при регистрации низкоскоростных соударений на расстоянии не менее 100 метров и обеспечивать при этом непрерывную регистрацию динамического давления от момента включения аппаратуры до разрушения датчиков в течение не менее 100 мс, что значительно превышает время регистрации процессов по сравнению с прототипом.

Система регистрации динамического давления, содержащая манганиновый датчик давления, регистратор сигналов, передающий модуль, включающий в себя дифференциальный усилитель, входы которого соединены с первым и вторым выходами манганинового датчика давления, второй выход которого заземлен, и генератор тока, отличающаяся тем, что дополнительно введен приемный модуль, включающий в себя преобразователь AC/DC, вход которого подключен к питающей сети, магистральный приемник, усилитель, а в передающий модуль дополнительно введен разностный усилитель, драйвер линии и источник опорного напряжения, выход которого соединен с первым входом разностного усилителя, второй вход которого соединен с выходом дифференциального усилителя, выход разностного усилителя соединен с входом драйвера линии, выходы которого соединены с соответствующими входами магистрального приемника приемного модуля, выход которого соединен с входом усилителя, выход которого соединен с входом регистратора сигналов, выход преобразователя AC/DC соединен с входом генератора тока, выход которого соединен с первым входом манганинового датчика давления, при этом генератор тока выполнен прецизионным.



 

Похожие патенты:

Изобретение относится к технологии получения пьезоэлектрического кристалла на основе лангатата с высокой стабильностью и высокими изоляционными свойствами для использования в качестве пьезоэлектрического элемента датчика давления для измерения давления при сгорании внутри камеры двигателя внутреннего сгорания.
Изобретение относится к технологии изготовления пьезоэлектрических чувствительных элементов из пьезоэлектрических материалов и может быть использовано при изготовлении датчиков динамического давления для двигателей внутреннего сгорания из синтетических кристаллов галлотанталата лантан La3Ga5,5Ta0,5O14.

Изобретение относится к метрологии, в частности к средствам дистанционного контроля параметров пьезодатчиков. Устройство содержит пьезодатчик с нагрузкой, электроды которого соединены со входом усилителя тока, выход которого соединен кабельной измерительной линией с регистратором.

Изобретение может быть использовано в двигателях внутреннего сгорания (ДВС) с воспламенением от сжатия. Штифтовая запальная свеча содержит корпус с нагревательным элементом 3 (НЭ), выполненным в форме стержня.

Изобретение относится к области измерительной техники и предназначено для измерения параметров импульсного давления, создаваемого в воздухе взрывным источником ударных волн.

Изобретение относится к измерительной технике и может быть использовано для измерения давления ударной волны. .

Изобретение относится к медицинской технике, а именно к устройствам и способам для комплексного обследования сердечно-сосудистой системы. .

Изобретение относится к устройствам для преобразования сигналов давления в электрические сигналы, и наоборот. .

Изобретение относится к измерительной технике, конкретнее к области электрических и оптических измерений параметров импульсных механических нагрузок в виброакустике и физике ударных волн, в том числе при электровзрыве проводников и воздействии на вещество интенсивного излучения или корпускулярных пучков.

Изобретение относится к области измерительной техники и предназначено для регистрации моментов выхода ударных и детонационных волн на поверхностях элементов исследуемого объекта, а также для измерения параметров ударных и детонационных волн.
Наверх