Способ проверки вероятности достоверных измерений

Изобретение относится к технике измерений при воздействии помех, например, в лазерной дальнометрии или в системах охранной сигнализации. Способ проверки вероятности р достоверных измерений прибора, заключающийся в n-кратном повторении измерений, определении количества m недостоверных измерений и сравнении m с предельно допустимым значением количества недостоверных измерений mпд(n), проверку проводят поэтапно, а именно, на первом этапе производят серию измерений, где t - доверительный коэффициент, и если количество недостоверных измерений не превышает m1=0, то прибор считают исправным и проверку прекращают, если m1=1, то серию измерений продолжают до количества , и если количество недостоверных измерений не превышает m2=1, то прибор считают исправным и проверку прекращают, если m2=2, то серию измерений продолжают до количества , и если количество недостоверных измерений не превышает m3=2, то прибор считают исправным и проверку прекращают, аналогичным образом серию измерений продолжают до и считают прибор исправным, если количество недостоверных измерений в серии mk≤(k-1), в противном случае прибор считают не выдержавшим проверку. Технический результат изобретения заключается в обеспечении максимальной надежности проверки при минимальном объеме испытаний. 2 ил.

 

Предлагаемое изобретение относится к технике измерений при воздействии помех, например, в лазерной дальнометрии, в системах охранной сигнализации и других областях с повышенными требованиями к достоверности измерений.

Известны способы дистанционных измерений, связанные с выделением слабых сигналов [1], заключающиеся в зондировании удаленного объекта импульсами лазерного излучения, приеме отраженных объектом сигналов и определении параметров отраженного сигнала, по которым судят о характеристиках удаленного объекта, например, дальности до него. Результаты таких процедур должны удовлетворять заданной вероятности достоверного измерения.

Известны средства анализа видеоизображения в системах охранного телевидения [2], осуществляющие обнаружение сигналов от удаленных датчиков. В этом случае также требуется обеспечивать заданную вероятность правильной идентификации сигнала.

Известны также методы стабилизации частоты ложных срабатываний на допустимом уровне в процессе измерения [3].

Особенностью этих способов являются противоречивые требования к порогу обнаружения принимаемых сигналов. С одной стороны, этот порог должен быть как можно ниже, чтобы обеспечить максимальную чувствительность датчика. С другой стороны, порог срабатывания должен быть достаточно высоким, чтобы минимизировать вероятность ложного срабатывания от внутреннего шума датчика и других помех. Таким образом, вероятность достоверного измерения должна быть как можно ближе к допустимому пределу, что предъявляет строгие требования к точности методов контроля, пропорциональной объему испытаний.

Наиболее близким по технической сущности к предлагаемому способу является способ проверки вероятности достоверного измерения, реализованный в лазерном дальномере ЛПР-1 [4]. Проверку данного прибора на соответствие требованиям по вероятности достоверного измерения производят путем проведения 10 измерений, из которых не менее 9 должны быть достоверными.

При более высоких требованиях по вероятности достоверного измерения необходимый объем испытаний существенно возрастает, что ведет к увеличению продолжительности испытаний и сокращению ресурса проверяемого изделия.

Задачей изобретения является обеспечение максимальной надежности проверки при минимальном объеме испытаний.

Указанная задача решается за счет того, что в известном способе проверки вероятности р достоверных измерений прибора, заключающемся в n-кратном повторении измерений, определении количества m недостоверных измерений и сравнения m с предельно допустимым значением количества недостоверных измерений mпд(n), проверку проводят поэтапно, а именно, на первом этапе производят серию измерений, где t - доверительный коэффициент, и если количество недостоверных измерений не превышает m1=0, то прибор считают исправным и проверку прекращают, если m1=1, то серию измерений продолжают до количества и если количество недостоверных измерений не превышает m2=1, то прибор считают исправным и проверку прекращают, если m2=2, то серию измерений продолжают до количества и если количество недостоверных измерений не превышает m3=2, то прибор считают исправным и проверку прекращают, аналогичным образом серию измерений продолжают до и считают прибор исправным, если количество недостоверных измерений в серии mk≤(k-1), в противном случае прибор считают не выдержавшим проверку.

Техническим результатом изобретения является обеспечение высокой надежности средства измерения при гарантированном минимуме вероятности недостоверного измерения и при минимальном количестве измерений в процессе испытаний.

На фиг. 1 представлена схема устройства, реализующего способ. На фиг. 2 - диаграмма статистического разброса результатов испытаний.

Согласно фиг. 1 устройство содержит приемник 1, на вход которого подается смесь сигнала с шумом, а на выходе последовательно включены счетчик m недостоверных измерений 2 и решающее устройство 3. К другому входу решающего устройства подключен счетчик n наработки 4. Выходы программного блока 5 связаны с приемником, счетчиком n и счетчиком m. выход решающего устройства 3 связан с программным блоком 5. Другой выход решающего устройства является выходом системы.

Способ осуществляется следующим образом.

Перед началом контрольной серии измерений с помощью программного блока 5 обнуляют счетчик m недостоверных измерений 2 и счетчик n наработки 4. Одновременно в решающем устройстве 3 устанавливают начальное состояние Запускают контрольную серию измерений и производят подсчет недостоверных измерений m путем их регистрации в счетчике 2. При достижении наработки n=n1 с помощью решающего устройства 3 проверяют условие m=0 и если это условие выполняется, то считают вероятность недостоверных измерений в норме и заканчивают проверку. Если m>0, то это значение регистрируют в решающем устройстве и продолжают испытания до наработки Если при этом m=k-1, то считают вероятность недостоверных измерений в норме и заканчивают проверку. В противном случае считают, что прибор не выдержал испытаний. Предельное количество k измерений, необходимое для гарантированного подтверждения результата, устанавливают исходя из принятых доверительных условий.

Относительная частота недостоверных измерений соответствует схеме Бернулли для случайных альтернативных событий и подчиняется биномиальному распределению [5].

При этом математическое ожидание оценки W частоты недостоверных измерений m/n в серии из n испытаний

Дисперсия оценки частоты недостоверных измерений

где р - ожидаемая вероятность события.

Среднеквадратическое отклонение оценки

На фиг 2 показано положение оценки W относительно истинного значения вероятности р, а также диаграмма плотности распределения оценок со среднеквадратическим отклонением σ и доверительными границами ±tσ.

При оценке W вероятности недостоверного измерения путем подсчета относительной частоты недостоверных измерений [5] как отношения количества m* недостоверных измерений и полного объема серии n приемочное количество m*=m*пр определяется выражением

где

р - заданная вероятность недостоверного измерения

- доверительный коэффициент.

При минимально значимой величине m*np=1 из (4) следует минимальный объем серии

где

Пример 1

p=0,01;

В соответствии с (5) nмин=1091.

Согласно методу интервальных оценок [5] верхняя граница доверительной вероятности при n>>1 описывается формулой

где W=m/n;

t - доверительный коэффициент, определяемый из выражения

Ф(t)=γ/2:

γ - доверительная вероятность;

Ф(t) - функция Лапласа.

При W<<1 выражение (6) упрощается

откуда

Предлагаемое техническое решение заключается в поэтапном применении критерия (8) в процессе проверки вероятности достоверного измерения для каждого из недостоверных результатов.

На первом этапе проводят измерения в количестве, достаточном для получения с заданной доверительной вероятностью одного недостоверного результата.

Пример 2

m=1; р=0,01; t=2 (соответствует вероятности γ=0,95).

В соответствии с формулой (8)

Аналогично для m=2

Это означает, что при наличии одного недостоверного измерения в первой серии проводят дополнительно n2*=n2-n1=483-300=183 измерения.

При этом среднее количество измерений при испытаниях серийной продукции по результатам двухэтапной проверки

Пример 3

В условиях примера 2 nср=300+0,05-183=309.

Влиянием третьего и последующих этапов проверки на nср на среднее количество измерений можно пренебречь, поскольку уменьшающий множитель (1-γ) входит в выражение в степени 2 и т.д.

Из полученных результатов видно, что предлагаемое техническое решение по сравнению с известными позволяет сократить среднюю наработку nср в процессе испытаний с 1091 (пример 1) до 309 (пример 3), то есть более чем в три раза.

Таким образом, предлагаемый способ является решением поставленной задачи и обеспечивает максимальную надежность проверки при минимальном объеме испытаний.

Источники информации

1. Боек. Использование лазеров для измерения расстояний. «Зарубежная радиоэлектроника», 1964, №3.

2. Методические рекомендации Р 78.36.030-2013. Применение программных средств анализа видеоизображения в системах охранного телевидения.

3. Вильнер В.Г. Проектирование пороговых устройств с шумовой стабилизацией порога. // Оптико-механическая промышленность. - 1984 г. - №5, - С. 39-41.

4. Лазерный прибор разведки ЛПР-1. Техническое описание и инструкция по эксплуатации. - прототип.

5. Гмурман В.Е. Теория вероятностей и математическая статистика. М. «Высшая школа», 1977 г. - С. 66.

Способ проверки вероятности р достоверных измерений прибора, заключающийся в n-кратном повторении измерений, определении количества m недостоверных измерений и сравнении m с предельно допустимым значением количества недостоверных измерений mпд(n), отличающийся тем, что проверку проводят поэтапно, а именно, на первом этапе производят серию измерений, где t - доверительный коэффициент, и если количество недостоверных измерений не превышает m1=0, то прибор считают исправным и проверку прекращают, если m1=1, то серию измерений продолжают до количества , и если количество недостоверных измерений не превышает m2=1, то прибор считают исправным и проверку прекращают, если m2=2, то серию измерений продолжают до количества , и если количество недостоверных измерений не превышает m3=2, то прибор считают исправным и проверку прекращают, аналогичным образом серию измерений продолжают до и считают прибор исправным, если количество недостоверных измерений в серии mk≤(k-1), в противном случае прибор считают не выдержавшим проверку.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для диагностики измерительного канала (ИК), выполняющего измерение контролируемого параметра объекта, в режиме непрерывного технологического процесса.

Группа изобретений относится к измерительной технике и может быть использована для диагностики резервированных измерительных каналов (ИК), выполняющих измерения одного и того же контролируемого параметра объекта, в режиме непрерывного технологического процесса.
Изобретение относится к системам испытания оборудования. Технический результат заключается в обеспечении достаточного тестового покрытия, гарантирующего максимально возможную полноту проведения испытаний.

Способ поверки группы измерительных приборов на производственном объекте по наблюдениям за технологическим процессом относится к области измерительной техники и предназначен для поверки и калибровки измерительных приборов, установленных на объектах трубопроводного транспорта.

Изобретение относится к области измерительной техники и касается способа калибровки измерительного устройства для измерения материальных свойств алмазов. Способ включает в себя предоставление образца из трех или больше измеряемых алмазов, которым присвоены целевые не зависящие от порядка представления алмазов статистические данные по одному или нескольким материальным свойствам, предоставление зарегистрированных измерительным устройством не зависящих от порядка представления алмазов статистических данных для образца из трех или больше упомянутых алмазов и преобразование фактического результата измерения таким образом, чтобы преобразованные наблюдавшиеся статистические данные совпадали с целевыми статистическими данными.

Изобретение относится к транспортным средствам с механической трансмиссией. Способ калибровки датчика выбранной передачи для механической трансмиссии с механизмом переключения передач Н-типа, в котором выбираемые передачи расположены в два ряда и имеют несколько параллельных плоскостей движения рычага переключения передач.

Изобретение относится к медицинской технике, а именно к средству оценки рентгеновского изображения. Фантом содержит пластинчатый элемент, имеющий на виде в плане четырехугольную форму и содержащий несколько областей, обладающих разными коэффициентами поглощения рентгеновского излучения.

Изобретение относится к устройству для контроля погрешности преобразования угла поворота вала в код. Устройство содержит образцовый преобразователь поворота вала в код, блок сопряжения контролируемого и образцового преобразователей, состоящий из узла жесткого соединения валов образцового и контролируемого преобразователей, узла для ограничения поворота корпуса контролируемого или образцового преобразователей с установленным на нем автоколлимационным зеркалом, угловое положение которого измеряется цифровым автоколлиматором.

Изобретение относится к цепи возбуждения датчиков постоянного тока. .

Изобретение относится к области космических технологий, в частности к способам полетной калибровки спутниковых сенсоров оптического диапазона в абсолютных энергетических единицах, и может быть использовано для калибровки спутниковых сенсоров высокого пространственного разрешения.
Наверх