Цифровой приемник оперативного измерения частоты с устройствами выборки хранения и амплитудными корректорами

Изобретение относится к измерительной технике и может быть использовано для измерения частоты непрерывных и импульсных сигналов СВЧ. Цифровой приемник оперативного измерения частоты состоит из синфазного делителя мощности, первый выход которого соединен с амплитудным корректором с восходящей по частоте АЧХ, второй выход которого соединен с амплитудным корректором с нисходящей по частоте АЧХ, первого и второго АЦП, выходы которых подключены к вычислительному устройству, источника тактирования, выход которого соединен с тактовыми входами первого и второго АЦП. Дополнительно введены первое и второе устройства выборки-хранения, причем вход первого устройства выборки-хранения соединен с выходом амплитудного корректора с восходящей по частоте АЧХ, вход второго устройства выборки-хранения соединен с выходом амплитудного корректора с нисходящей по частоте АЧХ, выходы первого и второго устройства выборки-хранения соединены с входами первого и второго АЦП соответственно, а выход устройства тактирования дополнительно соединен с тактовыми входами первого и второго устройств выборки-хранения. Техническим результатом является расширение полосы частот цифрового приемника. 3 ил.

 

Известен цифровой приемник оперативного измерения частоты [1]. Недостатками устройства являются высокие аппаратные и вычислительные затраты, связанные с необходимостью вести дискретизацию и дальнейшую обработку на трех различных частотах дискретизации. Кроме того, при несовпадении сеток частот полученных спектров, для устранения эффекта наложения спектров необходимо выполнение передискретизации в единую сетку частот, что требует дополнительных вычислительных затрат. Еще одним недостатком устройства являются паразитные сигналы по зеркальному каналу, гармоники гетеродина и входного сигнала, а также интермодуляционные искажения при наличии на входе устройства нескольких сигналов. Другим недостатком устройства является необходимость в перестраиваемом в широкой полосе гетеродине. Кроме того, потери в смесителе ограничивают чувствительность цифрового приемника.

Также известен цифровой приемник оперативного измерения частоты с дискретизацией комплексного сигнала [2]. Недостатками данного метода являются высокие аппаратные и вычислительные затраты, связанные с необходимостью вести дискретизацию и дальнейшую обработку синфазного и квадратурного сигналов на двух различных частотах дискретизации. Кроме того, при несовпадении сеток частот полученных спектров, для устранения эффекта наложения спектров необходимо выполнение передискретизации в единую сетку частот, что требует дополнительных вычислительных затрат. Еще одним недостатком устройства являются паразитные сигналы по зеркальному каналу, гармоники гетеродина и входного сигнала, а также интермодуляционные искажения при наличии на входе устройства нескольких сигналов. Другим недостатком устройства является необходимость в перестраиваемом в широкой полосе гетеродине и широкополосном фазовращетеле с низкой фазовой ошибкой. Кроме того, потери в смесителях ограничивают чувствительность цифрового приемника.

Наиболее близким по технической сущности и достигаемому техническому результату к заявляемому изобретению является цифровой приемник оперативного измерения частоты с дискретизацией двух амплитудно-корректированных частей сигнала [3]. Входной сигнал делится на две равные части, первая часть подвергается амплитудной коррекции с восходящей по частоте АЧХ, вторая часть подвергается амплитудной коррекции нисходящей по частоте АЧХ. Неоднозначность измерения частоты по амплитудным спектрам, возникающая из-за явления наложения спектров [4] разрешается по однозначной связи отношения максимумов на амплитудных спектрах от первого и второго АЦП с частотой входного сигнала.

Недостатком данного приемника является узкая полоса рабочих частот, которая ограничивается аналоговой полосой пропускания АЦП.

Техническим результатом изобретения является расширение полосы частот цифрового приемника. Целью изобретения является расширение полосы частот цифрового приемника.

Заявленный достигается тем, что в цифровой приемник оперативного измерения частоты, состоящий из синфазного делителя мощности, первый выход которого соединен с амплитудным корректором с восходящей по частоте АЧХ, второй выход которого соединен с амплитудным корректором с нисходящей по частоте АЧХ, первого и второго АЦП, выходы которых подключены к вычислительному устройству, источника тактирования, выход которого соединен с тактовыми входами первого и второго АЦП, дополнительно введены первое и второе устройство выборки-хранения, причем вход первого устройства выборки-хранения соединен с выходом амплитудного корректора с восходящей по частоте АЧХ, вход второго устройства выборки-хранения соединен с выходом амплитудного корректора с нисходящей по частоте АЧХ, выходы первого и второго устройства выборки-хранения соединены с входами первого и второго АЦП соответственно, а выход устройства тактирования дополнительно соединен с тактовыми входами первого и второго устройств выборки-хранения.

На фиг.1 представлена функциональная схема цифрового приемника оперативного измерения частоты с устройством выборки хранения и линией задержки. Устройство содержит: синфазный делитель СВЧ мощности 1, амплитудный корректор с восходящей по частоте АЧХ 2, устройство тактирования 3, амплитудный корректор с нисходящей по частоте АЧХ 4, устройства 5 и 6 выборки-хранения, АЦП 7 и 8, вычислительное устройство 9.

На фиг. 2 представлены АЧХ амплитудного корректора с восходящей по частоте характеристикой (кривая 1) и с нисходящей по частоте характеристикой (кривая 2). На фиг. 3 представлено отношение модулей коэффициентов передачи первого и второго (кривая 2), второго и первого (кривая 1) амплитудных корректоров.

Цифровой приемник оперативного измерения частоты с устройствами выборки хранения и амплитудными корректорами работает следующим образом. Входной сигнал делится на две равные по мощности части в синфазном делителе СВЧ мощности 1. Первая часть поступает в амплитудный корректор с восходящей по частоте АЧХ 2. Вторая часть сигнала поступает в амплитудный корректор с нисходящей по частоте АЧХ 4. С выхода амплитудных корректоров 2 и 4 сигналы поступают на устройства выборки-хранения 5 и 6 соответственно. Устройства выборки хранения 5 и 6 по фронту тактового сигнала с частотой fs от устройства тактирования 3 производят выборку входного сигнала, по срезу тактового сигнала переходят в режим хранения и хранят выбранное значение до поступления очередного фронта тактового сигнала от устройства тактирования 3. Напряжения на выходе устройств выборки-хранения 5 и 6 поступают на входы АЦП 7 и 8 соответственно. По срезу тактового сигнала АЦП 7 и 8 начинают преобразование. Цифровые отсчеты от АЦП 7 и 8 поступают в вычислительное устройство 9, которое вычисляет амплитудный спектр сигнала, осуществляет поиск максимума и по нему оценивает частоту входного сигнала. При этом если частота входного сигнала превышает половину частоты следования тактовых импульсов от устройства тактирования 3, происходит наложение спектров [4] и сигнал преобразуется в первую зону Найквиста-Котельникова. Возникает неоднозначность измерения частоты, которая может быть разрешена с помощью способа, описанного в [3]. Для этого по отсчетам АЦП 7 и 8 устройство 9 вычисляет амплитудные спектры входного сигнала, подвергнутого восходящей и нисходящей по частоте амплитудной коррекции. Разрешение неоднозначности измерения частоты производится по отношению максимумов, расположенных на одинаковой частоте, на амплитудных спектрах от АЦП 7 и 8. Отношение максимумов на амплитудных спектрах однозначно связано с частотой входного сигнала согласно графику на фиг.3.

Введение устройств выборки-хранения перед АЦП позволяет существенно расширить диапазон измеряемых устройством частот. Диапазон входных частот современных устройств выборки-хранения простирается как минимум до 27 ГГц [5].

Список использованных источников

1. Sanderson R.B., Tsui J.B.Y. Digital frequency measurement receiver with bandwith improvement through multiple sampling of real signals. Патент США на изобретение №5099194.

2. Tsui J.B.Y., Sanderson R.B. Digital frequency measurement receiver with bandwith improvement through multiple sampling of complex signals. Патент США на изобретение №5099243.

3. Аткишкин С.Ф. Способ расширения полосы частот анализа радиосигналов. Патент РФ №2710097С1

4. Elbornsson, J. Blind Equalization of Time Errors in a Time-Interleaved ADC System/J. Elbornsson, F. Gustafsson, J. -E. Eklund//IEEE Transactions on signal processing. – 2005. - №4. – VOL53. – pp. 1413 – 1424

5. Lin, Y. -A. A 27-GHz 45-dB SFDR track-and-hold amplifier using modified Darlington amplifier and cascoded SEF in 0.18-um SiGe process/Y. –A. Lin, Y. –C. Yeh, H. –Y. Chang// IEEE MTT-S International Microwave Symposium (IMS). – 2017. – pp. 137 - 140

Цифровой приемник оперативного измерения частоты, состоящий из синфазного делителя мощности, первый выход которого соединен с амплитудным корректором с восходящей по частоте АЧХ, второй выход которого соединен с амплитудным корректором с нисходящей по частоте АЧХ, первого и второго АЦП, выходы которых подключены к вычислительному устройству, источника тактирования, выход которого соединен с тактовыми входами первого и второго АЦП, отличающий тем, что в него дополнительно введены первое и второе устройство выборки-хранения, причем вход первого устройства выборки-хранения соединен с выходом амплитудного корректора с восходящей по частоте АЧХ, вход второго устройства выборки-хранения соединен с выходом амплитудного корректора с нисходящей по частоте АЧХ, выходы первого и второго устройства выборки-хранения соединены с входами первого и второго АЦП соответственно, а выход устройства тактирования дополнительно соединен с тактовыми входами первого и второго устройств выборки-хранения.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для оперативного измерения несущей частоты непрерывных и импульсных сигналов СВЧ в широком диапазоне частот.

Изобретение относится к измерительной технике и может быть использовано для оперативного измерения частоты непрерывных СВЧ сигналов в широком диапазоне частот. Техническим результатом является снижение погрешности измерения частоты.

Изобретение относится к измерительной технике и может быть использовано для оперативного измерения частоты непрерывных СВЧ сигналов в широком диапазоне частот. Широкополосный измеритель частоты СВЧ сигналов состоит из последовательно включенных входного усилителя-ограничителя, полосно-пропускающего СВЧ фильтра, синфазного делителя СВЧ мощности на N+1 (N принимает значения из ряда 2,3,4,5 и так далее), а также N линий задержки, N фазовых корреляторов, выходы которых подключены к вычислительному устройству.

Изобретение относится к измерительной технике и может быть использовано для измерения частоты непрерывных радиосигналов в широком диапазоне частот. Устройство состоит из двух АЦП, работающих на частотах Fs1 и Fs2 соответственно, входы которых соединены вместе, и решающего устройства.

Изобретение относится к медицинской технике и используется для проведения нейрофизиологических исследований микроволновой электромагнитной активности разных участков головного мозга (ГМ) человека путем транскраниальной регистрации амплитудно-частотных характеристик (АЧХ) слабых электромагнитных волн (сЭМВ) в диапазоне ультравысоких (УВЧ) и сверхвысоких (СВЧ) частот от 1,5 до 5,0 ГГц.

Изобретение может быть использовано в системах наблюдения за радиотехнической обстановкой и для измерения разности фаз между сигналами. Техническим результатом является повышение точности измерения за счет компенсации постоянного смещения после демодуляции сигналов и за счет использования обратной функции, близкой к линейной, вместо функции arctg.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения резонансной частоты различного типа резонаторов. Способ измерения резонансной частоты содержит этапы, на которых осуществляют режим поиска резонансной частоты, в котором на каждой i-й итерации на вход резонатора последовательно подают сигналы с частотами ƒi-b и ƒi+b, находящимися в диапазоне изменения измеряемой резонансной частоты, измеряют амплитуды сигналов на выходе резонатора и , соответствующие указанным частотам, затем вычисляют частоту ƒi+1, а также определяют знак разности напряжений и при изменении этого знака осуществляют режим слежения за резонансной частотой, в котором сравнивают частоты ƒi+1 и ƒi, и если на i-й итерации модуль разности этих частот меньше, чем величина, определяемая заданной погрешностью измерения резонансной частоты, то на всех последующих итерациях фиксируют частоты ƒi и резонансную частоту определяют как среднее значение этих зафиксированных частот.

Изобретение относится к области электрорадиотехники, а именно к технике радиосвязи, и может быть использовано в системах одночастотной передачи данных, а также в системах радиозондирования для измерения доплеровского смещения несущей частоты сигнала в информационно-измерительных устройствах без априорной информации о модулирующем сообщении.

Изобретение относится к измерительной технике и радиоэлектронному приборостроению и может использоваться в расходометрии любых электропроводных и неэлектропроводных, прозрачных и непрозрачных жидкостей, в химической, нефтеперерабатывающей, фармацевтической промышленности, в энергетике и жилищно-коммунальном хозяйстве в составе систем учета жидкостей.

Изобретение относится к радиотехнике, в частности к системам измерения частоты, и может быть использовано в матричном приемнике средств радиотехнической разведки.

Изобретение относится к измерительной технике и может быть использовано для измерения частоты непрерывных и импульсных сигналов СВЧ. Цифровой приемник оперативного измерения частоты состоит из синфазного делителя мощности, второй выход которого соединен с входом линии задержки, первого и второго АЦП, выходы которых соединены с вычислительным устройством тактового генератора, тактирующего первый и второй АЦП. Дополнительно введены первое и второе устройство выборки-хранения, причем первый выход синфазного делителя мощности соединен со входом первого устройства выборки-хранения, выход линии задержки соединен со входом второго устройства выборки-хранения, выходы первого и второго устройств выборки-хранения соединены со входами первого и второго АЦП соответственно, сигнал тактирования на устройства выборки хранения поступает от тактового генератора, тактирующего АЦП. Техническим результатом изобретения является расширение полосы частот цифрового приемника. 1 ил.
Наверх