Способ построения кривой деформирования грунта

Изобретение относится к области строительства и предназначено для оперативного построения предполагаемой кривой деформирования грунта и оценки физико-механических характеристик грунтов оснований, обеспечивающих методы расчета оснований, фундаментов и подземных сооружений исходной информацией. Способ построения кривой деформирования грунта включает испытания грунта, по которым производят графическое построение предполагаемой кривой деформирования грунта. Проводят полевые испытания образцов грунта методом многоканального анализа поверхностных волн, по результатам анализа строят профиль распределения скоростей поверхностных волн, по профилю распределения скоростей поверхностных волн оценивают удельный вес слоев грунта γ, начальный модуль сдвига G0 при малых деформациях, коэффициент корреляции k между начальным модулем сдвига и модулем деформации, модуль деформации Е для штампа площадью 5000 см2, далее задают отношение r модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Eупр, соответствующему максимальному касательному модулю деформации, для штампа площадью 5000 см2 в интервале 0,59-0,86 и рассчитывают упругий модуль деформации Еупр по первичной ветви нагружения по приведенной зависимости. Определяют скорость продольной волны Vp при полевых испытаниях или по приведенной зависимости. Далее оценивают удельное сцепление с и угол внутреннего трения ϕ грунта по приведенной зависимости. По результатам испытаний методом многоканального анализа поверхностных волн оценивают бытовое давление σбыт на требуемой глубине по приведенной зависимости. Далее выбирают форму предполагаемой кривой деформирования: гиперболическую или экспоненциальную, рассчитывают предельное девиаторное напряжение σдев,пр по приведенной зависимости. Производят графическое построение предполагаемой кривой деформирования по одной из формул - для гиперболической или экспоненциальной кривой деформирования. Технический результат состоит в обеспечении оперативно и недорого оценить физико-механические характеристики каждого слоя грунта, построить предполагаемую кривую деформирования грунта и выполнить предварительную оценку геотехнической ситуации площадки объекта нового строительства/реконструкции неразрушающим методом. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области строительства и предназначено для оперативного построения предполагаемой кривой деформирования грунта и оценки физико-механических характеристик грунтов оснований, используемых для последующего расчета оснований, фундаментов и подземных сооружений.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ построения кривой деформирования грунта по данным лабораторных испытаний образцов грунта на трехосное сжатие [ГОСТ 12248-2010 «Грунты. Методы лабораторного определения характеристик прочности и деформируемости»], включающий лабораторные испытания образцов грунта ненарушенной структуры или нарушенной структуры с заданными параметрами, на трехосное сжатие в стабилометрах до разрушения образцов грунта по консолидированно-дренированной схеме. По результатам нескольких испытаний при различном боковом давлении в камере трехосного сжатия, строят кривые деформирования ε1 = ƒ(σдев), представляющие собой зависимости относительной вертикальной деформации ε1 от девиаторного напряжения σдев, с помощью которых определяют деформационные и прочностные характеристики грунта. При необходимости проводят аппроксимацию полученных кривых деформирования по различным моделям вида σдев = ƒ(ε1) (т.е. девиаторное напряжение σдев изменяется в зависимости от относительной вертикальной деформации ε1 для удобства аппроксимации). Данный способ принят за прототип.

Недостатками известного способа, принятого за прототип, являются трудоемкость подготовительных операций и значительные сроки проведения испытаний.

Признаки прототипа, совпадающие с существенными признаками заявляемого способа - проводят испытания грунта, по которым производят графическое построение предполагаемой кривой деформирования грунта.

Задача, на решение которой направлено заявляемое изобретение - создание способа оперативного построения предполагаемой кривой деформирования грунта, сопоставимой с результатами испытаний на трехосное сжатие, по скорости поверхностной волны, позволяющего снизить трудоемкость подготовительных операций перед испытаниями и сократить сроки проведения испытаний.

Поставленная задача была решена за счет следующего порядка построения кривой деформирования согласно предлагаемому изобретению:

1. Проводят полевые испытания образцов грунта методом многоканального анализа поверхностных волн, по результатам анализа строят профиль распределения скоростей поверхностных волн.

2. По скоростям поверхностных волн оценивают удельный вес слоев грунта γ, начальный модуль сдвига G0 при малых деформациях, коэффициент корреляции k между начальным модулем сдвига и модулем деформации, модуль деформации Е, соответствующий модулю деформации для штампа площадью 5000 см2.

3. Задают отношение r модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Еупр (максимальный касательный модуль деформации) для штампа площадью 5000 см2 в интервале 0,59-0,86 (рекомендуется при отсутствии данных о величине r предварительно принимать ее значение 0,65) и рассчитывают упругий модуль деформации Еупр по формуле:

где Е - модуль деформации грунта для штампа площадью 5000 см2, МПа;

r - заданное отношение модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Еупр для штампа площадью 5000 см2, МПа.

4. Определяют скорость продольной волны Vp при полевых испытаниях или производят ее расчет при динамическом коэффициенте Пуассона νдин, заданном по таблице Г.1 [Прил. Г, СП 23.13330.2018 «Основания гидротехнических сооружений»], по формуле:

где νдин - заданный динамический коэффициент Пуассона;

VR - скорость поверхностной волны рэлеевского типа, м/с, определяется по результатам полевых испытаний методом многоканального анализа поверхностных волн;

5. По формулам (3, 4) оценивают удельное сцепление с и угол внутреннего трения ϕ грунта.

где ρ - плотность грунта, рассчитывается по величине удельного веса, кг/м3;

VR - скорость поверхностной волны рэлеевского типа, м/с, определяется по результатам полевых испытаний методом многоканального анализа поверхностных волн;

Vp - скорость продольной волны, м/с, определяется по результатам полевых испытаний одним из методов, доступных для параллельного выполнения на той же расстановке, на которой выполняется многоканальный анализ поверхностных волн, или рассчитывается по скорости поверхностной волны и заданному динамическому коэффициенту Пуассона;

6. По результатам испытаний методом многоканального анализа поверхностных волн оценивают бытовое давление σбыт на требуемой глубине по формуле (5) [СП 22.13330.2016. Основания зданий и сооружений. Введ. 2017-06-17. Москва: Минстрой России, 2016. 226 с.]:

где n - количество слоев грунта до требуемой глубины;

γi - удельный вес i-го грунтового слоя, кН/м3;

hi - высота i-го грунтового слоя, м;

7. Выбирают предпочитаемую форму кривой деформирования - гиперболическую или экспоненциальную. Выбор модели определяется личными предпочтениями, т.к. разница между ними минимальна и выражается в разных формах графиков (фиг. 1).

8. Рассчитывают предельное девиаторное напряжение σдев,пр по формуле (6) [Plaxis Material Models Manual 2019 [Electronic resource] / R. B. J. Brinkgreve (ed.) et al. 256 p. Access mode: URL: https://www.plaxis.com/?plaxis_download=2D-3-Material-Models.pdf; Wong, K. S. Hyperbolic Stress-Strain Parameters for Nonlinear Finite Element Analyses of Stress and Movements in Soil Masses / K. S. Wong, J. M. Duncan. University of California, Berkeley. Institute of Transportation and Traffic Engineering. Report No. TE-74-3. Berkeley: College of Engineering, University of California, 1974. 90 p.]

где Rƒ - критерий обрушения, принимается в интервале 0,75-1,0 и обычно задается равным 0,9 для гиперболической кривой деформирования и 1,0 для экспоненциальной кривой деформирования;

с - удельное сцепление, кПа;

ϕ - угол внутреннего трения, град;

σбыт - вертикальное бытовое давление;

9. Выполняют графическое построение предполагаемой кривой деформирования выбранной формы (гиперболическая или экспоненциальная) по одной из формул - (7) [Kondner, R. L. Hyperbolic Stress-Strain Response: Cohesive Soils // Journal of the Soil Mechanics and Foundation Division. 1963. Vol. 89, is. 1. P. 115-144] либо (8), предложенной авторами:

или

где σдев - девиаторное напряжение, МПа;

ε1 - вертикальная осевая деформация, д. ед.;

Еупр - упругий модуль деформации по ветви первичного нагружения для штампа площадью 5000 см2, МПа;

σдев,пр - предельное девиаторное напряжение, МПа;

ехр - основание натурального логарифма;

m1 = Еупр / σдев,пр - скоростной коэффициент первого порядка, равный отношению упругого модуля деформации Еупр для штампа площадью 5000 см2 к предельному девиаторному напряжению σдев,пр.

10. После построения кривой деформирования рекомендуется проводить аппроксимацию полученной кривой деформирования. Для этого на построенной кривой деформирования отмечают точку линейной аппроксимации модулем деформации Ешт = Е для штампа площадью 5000 см2 с координатами (εшт; σшт), рассчитываемыми по формулам (9, 10).

где m1 = Еупр / σдев,пр - скоростной коэффициент первого порядка, равный отношению упругого модуля деформации Еупр для штампа площадью 5000 см2 к предельному девиаторному напряжению σдев,пр;

σдев,пр - предельное девиаторное напряжение, МПа;

r - заданное отношение модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Еупр для штампа площадью 5000 см2, МПа;

х - коэффициент, который находится при заданном параметре r путем решения уравнения (11) для гиперболической кривой или (12) для экспоненциальной.

При предварительно принятом отношении r = 0,65 коэффициент х принимает значение 0,538 для гиперболической кривой деформирования или 0,934 для экспоненциальной кривой деформирования.

Признаки заявляемого технического решения, отличительные от прототипа - проводят полевые испытания образцов грунта методом многоканального анализа поверхностных волн; по результатам анализа строят профиль распределения скоростей поверхностных волн; по профилю распределения скоростей поверхностных волн оценивают удельный вес слоев грунта γ, начальный модуль сдвига G0 при малых деформациях, коэффициент корреляции k между начальным модулем сдвига и модулем деформации, модуль деформации Е для штампа площадью 5000 см2; задают отношение r модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Еупр (максимальный касательный модуль деформации) для штампа площадью 5000 см2 и рассчитывают упругий модуль деформации Еупр по формуле (1); определяют скорость продольной волны Vp при полевых испытаниях или производят ее расчет при заданном динамическом коэффициенте Пуассона νдин по скорости поверхностной волны VR по формуле (2); оценивают удельное сцепление с и угол внутреннего трения ϕ грунта по формулам (3) и (4); оценивают бытовое давление σбыт на требуемой глубине по формуле (5); выбирают предпочитаемую форму предполагаемой кривой деформирования - гиперболическую или экспоненциальную; рассчитывают предельное девиаторное напряжение σдев,пр по формуле (6); производят графическое построение предполагаемой кривой деформирования по формуле (7) или (8) в зависимости от выбранной формы кривой деформирования; на построенной кривой деформирования отмечают точку линейной аппроксимации модулем деформации Ешт = Е для штампа площадью 5000 см2 с координатами (εшт; σшт), рассчитываемыми по формулам (9) и (10).

Предлагаемый способ построения кривой деформирования грунта по скорости поверхностной волны, получаемой неразрушающим методом волнового анализа поверхностных волн, позволяет оперативно и с минимальными затратами оценить геотехническую ситуацию площадок строительства / реконструкции.

Поиск по патентным и научно-техническим источникам информации позволил установить, что способы оперативного построения кривых деформирования по данным многоканального анализа поверхностных волн о распределении скоростей поверхностных волн в грунтовом разрезе не обнаружены.

Предлагаемый способ поясняется чертежами, представленными на фиг. 1-2.

На фиг. 1 представлены формы предполагаемых кривых деформирования.

На фиг. 2 представлена схема кривой деформирования с отмеченной точкой линейной аппроксимации модулем деформации для штампа площадью 5000 см2.

Способ построения кривой деформирования грунта включает следующие этапы.

1. Проведение полевых испытаний неразрушающим волновым методом регистрации поверхностных волн, ориентированным на построение профиля скоростей поверхностных волн методом многоканального анализа поверхностных волн, обработка экспериментальных данных и построение волновых разрезов распределения скоростей поверхностных волн в грунтовом массиве.

2. Оценка удельного веса слоев грунта γ, начального модуля сдвига G0 при малых деформациях, коэффициента корреляции k и модуля деформации Е для штампа площадью 5000 см2 согласно известному способу оценки модуля деформации грунта по скорости поверхностной волны [Патент №2704074 «Способ оценки модуля деформации грунта»];

3. Задание отношения r модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Еупр для штампа площадью 5000 см2 и расчет упругого модуля деформации Еупр по формуле (1);

4. Определение скорости продольной волны Vp при полевых испытаниях или ее расчет при динамическом коэффициенте Пуассона νдин, задаваемом по таблице Г.1 [Прил. Г, СП 23.13330.2018 «Основания гидротехнических сооружений»], по формуле (2);

5. Оценка удельного сцепления с и угла внутреннего трения ϕ грунта по формулам (3) и (4);

6. Оценка бытового давления σбыт на требуемой глубине по формуле (5);

7. Выбор предпочитаемой формы предполагаемой кривой деформирования (фиг. 1): гиперболической или экспоненциальной;

8. Расчет предельного девиаторного напряжение σдев,пр по формуле (6);

9. Графическое построение предполагаемой кривой деформирования (рис. 2) по формуле (7) или (8) в зависимости от выбранной формы кривой деформирования;

10. После построения кривой деформирования рекомендуется проведение линейной аппроксимации полученной кривой деформирования модулем деформации Ешт = Е для штампа площадью 5000 см2 с координатами (εшт; σшт) (рис. 2), рассчитываемыми по формулам (9) и (10).

Построение предполагаемой кривой деформирования может выполняться на основе одной из двух моделей аппроксимации вида σдев = ƒ(ε1) результатов испытаний на трехосное сжатие: или гиперболической, или экспоненциальной. Выбор модели определяется личными предпочтениями, т.к. разница между ними минимальна и выражается разных формах графиков (фиг. 1). Гиперболическая модель предложена в работе [Kondner, R. L. Hyperbolic Stress-Strain Response: Cohesive Soils // Journal of the Soil Mechanics and Foundation Division. 1963. Vol. 89, is. 1. P. 115-144] и является основой для известных моделей упрочняющегося грунта и упрочняющегося грунта с малыми деформациями. Экспоненциальная модель, предложенная впервые авторами изобретения, получена в результате применения метода скоростных уравнений первого порядка [Handy, R. L. First-Order Rate Equations in Geotechnical Engineering // Journal of Geotechnical and Geoenvironmental Engineering. 2002. Vol. 128, Iss. 5. P. 416-425.] для обработки результатов испытаний на трехосное сжатие. Для выполнения построения и по гиперболической, и по экспоненциальной моделям, в качестве входных параметров требуются упругий модуль деформации по ветви первичного нагружения и предельное девиаторное напряжений. Гиперболическая и экспоненциальная модели незначительно отличаются только формой кривой.

Упругий модуль деформации (максимальный касательный модуль деформации) предлагается оценивать с помощью коэффициента отношения r модуля деформации к упругому модулю деформации по ветви первичного нагружения. На основе результатов [Антипов В.В., Офрихтер В.Г. Развитие неразрушающих методов предварительной геотехнической оценки грунтовых оснований // Вестник МГСУ, 2018. Т. 13, №12 (123). С. 1448-1473] полевых испытаний штампами (таблица), определено, что данный коэффициент r находится в интервале 0,59-0,86 и в большинстве случаев наиболее близок к величине 0,65.

Предельное девиаторное напряжение предлагается определять по известной формуле (6) для модели упрочняющегося грунта [Schanz Т., Vermeer P.A., Bonnier P.G., The Hardening-Soil Model: Formulation and Verification // Brinkgreve R. B. J. (eds.), Beyond 2000 in Computational Geotechnics. Balkema: Rotterdam, 1999. Pp. 281-290].

Оценку удельного сцепления и угла внутреннего трения предлагается производить с использованием скорости поверхностной волны, по формулам (3) и (4), предложенным авторами настоящего изобретения на основе корреляционных зависимостей из рекомендаций [Аникин О.П., Горшенин Ю.В. Методические рекомендации по определению состава, состояния и свойств грунтов сейсмоакустическими методами. Москва: Изд. ЦНИИС, 1985. 65 с.].

Использование предложенного способа построения кривой деформирования грунта позволяет оперативно и недорого оценить физико-механические характеристики каждого слоя грунта, построить предполагаемую кривую деформирования грунта и произвести оценку геотехнической ситуации площадки объекта нового строительства / реконструкции неразрушающим методом.

1. Способ построения кривой деформирования грунта, включающий испытания грунта, по которым производят графическое построение предполагаемой кривой деформирования грунта, отличающийся тем, что проводят полевые испытания образцов грунта методом многоканального анализа поверхностных волн, по результатам анализа строят профиль распределения скоростей поверхностных волн, по профилю распределения скоростей поверхностных волн оценивают удельный вес слоев грунта γ, начальный модуль сдвига G0 при малых деформациях, коэффициент корреляции k между начальным модулем сдвига и модулем деформации, модуль деформации Е для штампа площадью 5000 см2, далее задают отношение r модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Eупр, соответствующему максимальному касательному модулю деформации, для штампа площадью 5000 см2 в интервале 0,59-0,86 и рассчитывают упругий модуль деформации Еупр по первичной ветви нагружения по формуле

,

где Е - модуль деформации грунта для штампа площадью 5000 см2, МПа;

r - заданное отношение модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Еупр для штампа площадью 5000 см2, МПа;

определяют скорость продольной волны Vp при полевых испытаниях или по формуле

,

где νдин - заданный динамический коэффициент Пуассона;

VR - скорость поверхностной волны рэлеевского типа, м/с, определяемая по результатам полевых испытаний методом многоканального анализа поверхностных волн;

далее оценивают удельное сцепление с и угол внутреннего трения ϕ грунта по формулам

,

где ρ - плотность грунта, рассчитывается по величине удельного веса, кг/м3;

VR - скорость поверхностной волны рэлеевского типа, м/с, определяемая по результатам полевых испытаний методом многоканального анализа поверхностных волн;

Vp - скорость продольной волны, м/с, определяемая по результатам полевых испытаний одним из методов, доступных для параллельного выполнения на той же расстановке, на которой выполняется многоканальный анализ поверхностных волн или рассчитываемая по скорости поверхностной волны и заданному динамическому коэффициенту Пуассона;

по результатам испытаний методом многоканального анализа поверхностных волн оценивают бытовое давление σбыт на требуемой глубине по формуле

,

где n - количество слоев грунта до требуемой глубины;

γi - удельный вес i-го грунтового слоя, кН/м3;

hi - высота i-го грунтового слоя, м;

далее выбирают форму предполагаемой кривой деформирования: гиперболическую или экспоненциальную;

рассчитывают предельное девиаторное напряжение σдев,пр по формуле

,

где Rƒ - критерий обрушения, принимается в интервале 0,75-1,0 и обычно задается равным 0,9 для гиперболической кривой деформирования и 1,0 для экспоненциальной кривой деформирования;

с - удельное сцепление, кПа;

ϕ - угол внутреннего трения, град.;

σбыт - вертикальное бытовое давление;

производят графическое построение предполагаемой кривой деформирования по одной из формул - для гиперболической или экспоненциальной кривой деформирования

или

σдевдев,пр (l-ехр(-m1ε1)) - экспоненциальная кривая деформирования,

где σдев - девиаторное напряжение, МПа;

ε1 - вертикальная осевая деформация, д. ед.;

Еупр - упругий модуль деформации по ветви первичного нагружения для штампа площадью 5000 см2, МПа;

σдев,пр - предельное девиаторное напряжение, МПа;

ехр - основание натурального логарифма;

m1упрдев,пр - скоростной коэффициент первого порядка, равный отношению упругого модуля деформации Еупр для штампа площадью 5000 см2 к предельному девиаторному напряжению σдев,пр.

2. Способ по п. 1, отличающийся тем, что проводят аппроксимацию полученной кривой деформирования путем отметки точки линейной аппроксимации модулем деформации Ешт=Е для штампа площадью 5000 см2 с координатами εшт и σшт, рассчитываемыми по формулам

,

σшт=rxσдев,пр, МПа

где m1упрдев,пр - скоростной коэффициент первого порядка, равный отношению упругого модуля деформации Еупр для штампа площадью 5000 см2 к предельному девиаторному напряжению σдев,пр;

σдев,пр - предельное девиаторное напряжение, МПа;

r - заданное отношение модуля деформации Е для штампа площадью 5000 см2 к упругому модулю деформации Еупр для штампа площадью 5000 см2, МПа;

x - коэффициент, который находится при заданном параметре r путем решения уравнений



 

Похожие патенты:

Изобретение относится к строительству, а именно к устройствам для исследования деформационных и реологических характеристик грунтов зондированием пластинчатым зондом при инженерно-геологических изысканиях и может быть применено при определении качества грунтовых оснований зданий и различных земляных сооружений.

Настоящее изобретение относится к способу сооружения бетонного блока и направляющему элементу для установки бетонного блока. Технический результат: повышение точности скорости сооружения конструкций из бетонных блоков.

Изобретение относится к подземному строительству и испытательной технике. Способ моделирования процессов при проходке восстающих горных выработок на эквивалентных материалах, состоящий в том, что в процессе изготовления модели располагают дополнительную камеру для имитации полости, куда устанавливают приспособление для перемещения эквивалентных материалов на заданное расстояние.

Группа изобретений относится к средствам измерения осадок насыпей. Сущность: система измерения осадок насыпей содержит измерительный канал (1а, 1б) из пластиковых труб с помеченными точками измерения, инклинометрический зонд (3), репер (5) и компьютер (8) с программным обеспечением.

Изобретение относится к устройствам для отбора проб почв с целью проведения лабораторных исследований для определения абразивной составляющей. Ручной пробоотборник почвы включает полый цилиндр с радиусом полости R и заостренной нижней кромкой с двумя рукоятями, закрепленными к нему диаметрально, причем на поверхность цилиндра навита и жестко закреплена внешняя спираль с ненулевым шагом, а внутри цилиндра размещена внутренняя спираль радиуса r<R, выполненная жесткой с ненулевым шагом и заостренной в окончании с возможностью соединения с поперечиной, временно закрепленной сверху на полом цилиндре, причем внешняя и внутренняя спирали имеют одинаковое направление закручивания.

Изобретение относится к области строительства и предназначено для использования при проведении инженерно-геологических изысканий с целью определения механических свойств грунтов в полевых условиях.

Изобретение относится к строительству, а именно к способам испытания грунта и определению механических характеристик грунтов статическим зондированием при инженерно-геологических изысканиях.

Изобретение относится к строительству, а именно к способам испытания грунта. Способ испытания грунта методом статического зондирования, включающий периодическое погружение зонда в массиве грунта с остановками и измерение сопротивления грунта внедрению зонда во времени.

Изобретение относится к строительству и может быть использовано для мониторинга проблемных грунтов природного залегания, насыпных, основания фундаментов зданий и сооружений, основания дорог, тротуаров, мониторинга порыва трубопроводов и т.п.

Изобретение относится к строительному грунтоведению и применяется при инженерно-геологических изысканиях для строительства на набухающих грунтах, в частности, для определения свободного набухания и давления набухания грунтов.
Наверх