Способ повышения антибактериальной активности фурацилина in vitro

Авторы патента:


Изобретение относится к области фармацевтики, а именно к получению микрокапсул фурацилина. Раскрыт способ повышения антимикробной активности фурацилина in vitro путем диспергирования фурацилина в 0,5%-1,0% масс. растворе натриевой соли карбоксиметилцеллюлозы в воде, причем в качестве диспергатора используют неионный солюбилизатор и эмульгатор Cremophor® EL, взятый в количестве 1,0% масс. от массы капсулируемого вещества, представляющий собой полиоксиэтилированное касторовое масло. Дополнительное диспергирование полученной дисперсии осуществляют на ультразвуковой ванне ВУ-09-«Я-ФП»-03, а последующее высушивание дисперсии осуществляют методом распылительной сушки на распылительной сушилке Nano Spray Dryer B-90 при температуре 600°С на мембране с размером пор – 7 мкм. Изобретение обеспечивает упрощение и ускорение процесса получения микрокапсул с заданным набором свойств, а также повышение антибактериальной активности фурацилина за счет его микрокапсулирования. 1 табл., 3 пр., 3 ил.

 

Изобретение относится к области получения микрокапсул фурацилина с целью перевода их в форму, обладающую повышенной антибактериальной активностью и способную образовывать устойчивые водные дисперсии.

Известен способ получения композиции для доставки лекарственных средств (патент RU 2589823, 2016) которая содержит полупроницаемое покрытие, частицы лекарственного средства, и агент, придающий растворимость этому лекарственному средству. Частицы лекарственного средства должны иметь эффективный средний размер частиц приблизительно 2 мкм и поверхностный стабилизатор, адсорбированный на поверхности частиц лекарственного средства. Недостатком является сложный состав продукта и техническая сложность выполнения способа.

Известен способ получения микрокапсулированной формы терапевтического белка супероксиддисмутазы для перорального применения (патент RU 2583923, 2016) который заключается во введении супероксиддисмутазы в пористые кальций карбонатные (CaCO3) ядра предварительно полученные методом соосаждения растворов Na2CO3 и CaCl2×2H2O и дальнейшем формировании альгинатных микрокапсул, содержащих эти ядра. Недостатком является техническая сложность выполнения способа.

Известен способ получения супрамолекулярного комплекса с никлозамидом (RU 2588368, 2016) в котором никлозамид с поливинилпирролидоном в соотношении 1:5 по весу подвергается совместной механохимической обработке в валковой шаровой мельнице с добавлением 700 г металлических шаров в течение 2 часов при вращении барабана со скоростью 90 об/мин до получения частиц супрамолекулярного комплекса размером до 10 мкм. Изобретение направлено на повышение водорастворимости, биодоступности и антигельминтной эффективности никлозамида при снижении его дозы более чем в 10 раз. Недостатком является невозможность получения микрокапсулы указанным способом и высокая стоимость оборудования.

Известен способ получения микрокапсул (патент RU 2316390, 2008) в котором для формирования оболочки использовалась метилцеллюлоза с содержанием метоксильных групп от 27,5 до 32%. Недостатком является необходимость использования метилцеллюлозы со строго определенным содержанием метоксильных групп, а также точное соблюдение температурного режима.

Наиболее близким по технической сущности к предлагаемому методу является способ получения микрокапсул лекарственных препаратов (патент RU 2697056, 2019) путем диспергирования капсулируемого вещества в растворе полимера, в качестве которого использованы альгинат натрия, гуаровая камедь, поливинилпирролидон и поливиниловый спирт и осаждения полимера на поверхности частиц дисперсии путем добавления осадителя в качестве которого использовался насыщенный раствор хлорида натрия, ацетон или этанол.

Недостатком данного технического решения является необходимость использования органических растворителей.

Технической задачей изобретения является разработка способа повышения антибактериальной активности фурацилина путем его микрокапсулирования в водорастворимые полимеры.

Технический результат достигается тем, что способ повышения антимикробной активности фурацилина in vitro осуществляют путем диспергирования фурацилина в 0,5%-1,0% масс. водном растворе натриевой соли карбоксиметилцеллюлозы, с использованием в качестве диспергатора – неионного солюбилизатора и эмульгатора Cremophor® EL, взятым в количестве 1,0% масс. от массы фурацилина, дополнительным диспергированием полученной дисперсии на ультразвуковой ванне ВУ-09-«Я-ФП»-03 и высушиванием дисперсии методом распылительной сушки на распылительной сушилке Nano Spray Dryer B-90 от компании BUCHI при температуре 60°С на мембране с размером пор – 7 мкм.

Выбор полимера обусловлен широким использованием карбоксиметилцеллюлозы например, в пищевой промышленности (загустители), в косметологии. В фармацевтической промышленности натриевую соль карбоксиметилцеллюлозы используют в таких группах препаратов, как: глазные капли, растворы для инъекций – для пролонгирования терапевтического действия; оболочки таблеток – для регулирования высвобождения активного вещества; эмульсии, гели и мази – для стабилизации формообразующих веществ; антацидные препараты – в качестве ионообменных и комплексообразующих компонентов.

Фурацилин (нитрофурал) относится к антибактериальным средствам, действующим на грамположительные и грамотрицательные микроорганизмы – стафилококки, стрептококки, дизентерийную и кишечную палочки, сальмонеллу, возбудителей газовой гангрены. Все нитрофурановые лекарственные средства очень мало или не растворимы в воде (0,02%), чувствительны к свету. Поэтому инкапсулирование фурацилина в водорастворимые полимеры позволит не только повысить его биодоступность и способность растворяться в воде, но и предотвратить нежелательное влияние факторов окружающей среды.

Cremophor® EL, представляет собой полиоксиэтилированное касторовое масло и является неионным солюбилизатором и эмульгатором. Этот продукт солюбилизирует или эмульгирует растворимые в жирах витамины A, D, E и K в водных растворах для перорального и наружного введения. В водно-спиртовых растворах Cremophor® EL легко переводит в растворимую форму эфирные масла. Cremophor® EL используется для приготовления водных растворов гидрофобных лекарственных препаратов (миконазол, гексетидин, клотримазол, бензокаин). Применение при микрокапсулировании в качестве ПАВ препарата Cremophor® EL позволяет стабилизировать образующуюся дисперсию, предотвратить слипание микрокапсул на стадии их получения и облегчить процесс выделения микрокапсул. Cremophor® EL обеспечивает повышение растворимости микрокапсулированного фурацилина по сравнению с другими используемыми ранее ПАВ.

Дополнительное диспергирование дисперсии фурацилина в водном растворе натриевой соли карбоксиметилцеллюлозы в условиях ультразвуковой ванны ВУ-09-«Я-ФП»-03 производства ООО «Ферропласт Медикал» обеспечивает сохранение стабильности полученной дисперсии в рамках узкого диапазона степеней дисперсности.

Применение метода распылительной сушки для высушивания дисперсии фурацилина обеспечивает формирование на поверхности микрочастиц вещества оболочки из полимера, то есть происходит образование микрокапсул. Использование распылительной сушилки Nano Spray Dryer B-90 (BUCHI) для микрокапсулирования при температуре 60°С на мембране с размером пор – 7 мкм обеспечивает высокие выходы целевого продукта, который представляет собой порошок с узким распределением частиц по размеру (5-7 мкм).

Сущность изобретения поясняется чертежами, где на фиг.1 представлен ИК-спектр фурацилина, на фиг.2 - ИК-спектр поверхности микрокапсул фурацилина в оболочке из натриевой соли карбоксиметилцеллюлозы, на фиг.3 - микрофотографии микрокапсул фурацилина: а) в оболочке из натриевой соли карбоксиметилцеллюлозы состава 1:1, б) в оболочке из натриевой соли карбоксиметилцеллюлозы состава 1:2.

Способ осуществляется следующим образом.

К 0,5-1,0% масс. водному раствору натриевой соли карбоксиметилцеллюлозы (NaКМЦ) при непрерывном перемешивании добавляют раствор фурацилина в диметилформамиде (ДМФА) или диметилсульфоксиде (ДМСО). Количество полимера и вещества варьируется в соответствии с поставленной задачей. Диспергирование системы осуществляют перемешиванием на магнитной мешалке. Процесс ведут в присутствии поверхностно-активного вещества, взятого в количестве 1,0 %масс. от массы фурацилина. Таким образом, методом переосаждения получают тонкую дисперсию фурацилина в водном растворе полимера. Полученную дисперсию подвергают дополнительному диспергированию в течение 20мин. в условиях ультразвуковой ванны ВУ-09-«Я-ФП»-03 производства ООО «Ферропласт Медикал», после чего, она подвергается распылительной сушке на распылительной сушилке Nano Spray Dryer B-90 от компании BUCHI при температуре 60°С на мембране с размером пор – 7 мкм.

Количественный анализ микрокапсул осуществлялся методом градуировочного графика на спектрометре УФ/видимой области спектра UV–1800 (фирмы «Shimadzu») в интервале длин волн 500 – 200 нм в кювете с длинной светопоглощающего слоя 1 см, в интервале оптической плотности 0,0 ч 3,5.

Параллельно количественный анализ микрокапсулированных продуктов проводили методом ВЭЖХ с масс- и УФ-детекторами на хроматографе Waters MSD SQD-ESI (офВЭЖХ; детекторы: спектрофотометрический, 220 нм, масс-спектрометрический, ESI, 95-700 Da, source t -140є, desolvataion t - 400є, cone 40V, capillare 3kV; колонка Acquity BEH C18 2.1mm × 50mm+1.7um; подвижная фаза: вода (0,1 % муравьиная кислота) - ацетонитрил (0,1 % муравьиная кислота); режим элюирования – градиентный: 0,4 мл/мин).

Структура выделенных продуктов подтверждалась методом инфракрасной спектроскопии с использованием ИК-Фурье спектрометра типа IR-200, оснащенного приставкой нарушенного полного внутреннего отражения (НПВО). ИК НПВО использовали для регистрации спектров поверхности полученных микрокапсул (фиг.2). ИК-спектр капсулируемого вещества снимали в таблетке KBr (фиг.1).

Анализ полученных данных показал, что конфигурация и расположение основных полос поглощения в спектрах, приведенных на фиг.2 совпадают с аналогичными параметрами библиотечных спектров NaКМЦ. При этом в спектрах поверхности микрокапсул отсутствуют полосы поглощения характерные для исходных веществ, например в областях 1705, 1580 см-1 для фурацилина (Фиг.1). Указанный факт свидетельствует о том, что вещество преимущественно сосредоточено внутри капсулы и отсутствует в поверхностном слое.

Размер полученных капсул подтверждался методом электронной микроскопии при помощи сканирующего электронного микроскопа «QUANTA FEG 650» (Фиг.3).

Способ иллюстрируется следующими примерами.

Пример 1. Получение микрокапсул фурацилина в оболочке из NaКМЦ при соотношении вещество : полимер 1:1. В реактор, снабженный мешалкой, вносят 40 мл 0,5%-ного раствора NaКМЦ и 0,5 мл 0,4%-ного раствора поверхностно-активного вещества (Cremophor® EL). Включают перемешивание. Не останавливая перемешивания, в реактор медленно вносят 0,2г фурацилина растворенного в 1мл ДМФА или ДМСО. Полученную суспензию подвергают дополнительному диспергированию в течение 20мин. в условиях ультразвуковой ванны ВУ-09-«Я-ФП»-03 производства ООО «Ферропласт Медикал», после чего, она подвергается распылительной сушке на распылительной сушилке Nano Spray Dryer B-90 от компании BUCHI при температуре 60°С на мембране с размером пор – 7 мкм.

Выход – 91%.

Структура выделенных продуктов подтверждалась методом инфракрасной спектроскопии с использованием ИК-Фурье спектрометра типа IR-200, оснащенного приставкой нарушенного полного внутреннего отражения (НПВО) (Фиг.1-2).

Пример 2. Получение микрокапсул фурацилина в оболочке из NaКМЦ при соотношении вещество : полимер 1:2. В реактор, снабженный мешалкой, вносят 40 мл 1,0%-ного раствора NaКМЦ и 0,5 мл 0,4%-ного раствора поверхностно-активного вещества (Cremophor® EL). Включают перемешивание. Не останавливая перемешивания, в реактор медленно вносят 0,2г фурацилина растворенного в 1мл ДМФА или ДМСО. Полученную суспензию подвергают дополнительному диспергированию в течение 20мин. в условиях ультразвуковой ванны ВУ-09-«Я-ФП»-03 производства ООО «Ферропласт Медикал», после чего, она подвергается распылительной сушке на распылительной сушилке Nano Spray Dryer B-90 от компании BUCHI при температуре 60°С на мембране с размером пор – 7 мкм.

Выход – 93%.

Структура выделенных продуктов подтверждалась методом инфракрасной спектроскопии с использованием ИК-Фурье спектрометра типа IR-200, оснащенного приставкой нарушенного полного внутреннего отражения (НПВО) (Фиг.1-2).

Пример 3. Методика определения антимикробной активности микрокапсул фурацилина in vitro

Стеклянные чашки Петри, установленные на столиках со строго горизонтальной поверхностью, заливали расплавленной агаровой средой, предварительно засеянной тест-штаммами микроорганизмов. Взвесь тест-микробов для посева на чашки Петри готовили по стандарту мутности на 10 ЕД. В качестве посевного материала использовали суточные культуры. Взвесь каждого вида микроорганизма засевали на чашку Петри. Микробная нагрузка составляла 1000000 микробных клеток в 1 мл. При определении антимикробной активности исследуемых веществ готовили их растворы концентрацией 2,0%. помещали в центр цилиндра (0,1 мл). Затем чашки инкубировали при температуре (37±1)°С в течение 18-20 ч. В качестве сравнительного образца использовали стандартный раствор риванола в тех же концентрациях. Диаметр зон угнетения роста тест-микробов измеряли при помощи микролинейки с точностью до 1 мм.

Таблица

Результаты испытаний водных дисперсий микрокапсул фурацилина на противомикробную активность в условиях in vitro

Растворяемая субстанция Сдисперсии (раствора),% Сфурацилина,% Е. coli АТСС 25922 P. aeruginosa АТСС 27853 P. vulgaris АТСС 4636 S. aureus АТСС 25923 B. subtilis АТСС 6633 Candida albicans NCTC 2526
Зоны задержки роста
1 2 3 4 5 6 7 8 9
Фурацилин (в воде) - - 7 0 - 10 - 0
Фурацилин (в ДМСО) 1% 1% 26,0±1,1 9,0±0,5 28,0±1,0 30,0±1,0 31,0±1,0 14,5±0,5
Фурацилин в NaКМЦ 1:1 (в воде) 1% 0,5% 30,0±1,0 10,2±0,6 28,5±0,5 28,0±1,0 28,0±0,4 10,5±0,5
Фурацилин в NaКМЦ 1:2 (в воде) 1% 0,33% 27,0±0,8 10,1±0,5 27,0±1,0 26,0±±0,5 27,0±0,5 10,3±0,8

Таким образом, водные дисперсии микрокапсулированного в NaКМЦ фурацилина показывают значительно более высокую активность по сравнению с водным раствором исходного фурацилина и сопоставимы по активности с раствором фурацилина в ДМСО. При этом следует учитывать, что суспензия микрокапсул приготовлена в воде, а раствор фурацилина в ДМСО, который также проявляет некоторую антимикробную активность. Кроме того, ДМСО в связи с его влиянием на липидный обмен мембран способен быстро преодолевать кожный барьер и другие биологические мембраны не повреждая их. То есть ДМСО выступает проводником фурацилина через клеточные стенки микроорганизмов тем самым, повышая его биологическую доступность. Этот факт подтвержден результатом, представленным в табл. для водного раствора фурацилина. Полученные на основе инкапсулированного в указанный полимер фурацилина водные дисперсии с более низким, чем в растворах ДМСО, содержанием фурацилина, не уступают им по своей активности.

Таким образом, путем микрокапсулирования нам удалось создать композиции для получения высококонцентрированных водных псевдорастворов фурацилина, которые обладают более выраженным антибактериальным действием по сравнению с применяемым в медицинской практике его водным раствором, что позволяет значительно расширить область применения фурацилина в качестве антисептика для местного применения.

Заявляемый способ обеспечивает упрощение и ускорение процесса получения микрокапсул с заданным набором свойств.

Способ повышения антимикробной активности фурацилина in vitro путем диспергирования капсулируемого вещества в растворе полимера, отличающийся тем, что в качестве капсулируемого вещества используют фурацилин, в качестве раствора полимера 0,5%-1,0% масс. раствор натриевой соли карбоксиметилцеллюлозы в воде, а в качестве диспергатора - неионный солюбилизатор и эмульгатор Cremophor® EL, взятый в количестве 1,0% масс. от массы капсулируемого вещества, представляющий собой полиоксиэтилированное касторовое масло, дополнительное диспергирование полученной дисперсии осуществляют на ультразвуковой ванне ВУ-09-«Я-ФП»-03, а последующее высушивание дисперсии осуществляют методом распылительной сушки на распылительной сушилке Nano Spray Dryer B-90 при температуре 60°С на мембране с размером пор – 7 мкм.



 

Похожие патенты:
Наверх