Способ электродугового упрочнения стальных изделий

Изобретение относится к термической обработке стали методом упрочнения с помощью электрической дуги и может быть использовано для повышения твердости и износостойкости поверхностей деталей, работающих при ударных и знакопеременных нагрузках в машиностроении. Способ электродугового упрочнения стальных изделий включает в себя нагрев поверхности изделия электрической дугой прямой полярности, зажигаемой между неплавящимся электродом и поверхностью изделия. Для этого используют неплавящийся электрод с углом заточки от 45 до 75±2°. Также осуществляют регулирование тепловложения дуги путем изменения силы тока от 40 до 90 А. При этом изделие вращают в процессе обработки со скоростью от 0,009 до 0,02 об/с. Техническим результатом изобретения является повышение твердости и износостойкости поверхности изделия, регулирование глубины упрочненного слоя. 1 пр., 1 ил.

 

Изобретение относится к термической обработке стали методом упрочнения с помощью электрической дуги и может быть использовано для повышения твердости и износостойкости поверхностей деталей, работающих при ударных и знакопеременных нагрузках в машиностроении.

Известен способ поверхностной закалки изделий, включающий закалку путем перемещения по поверхности изделия плазменной дуги прямого действия, возбуждаемой между электродом и изделием, когда электродом является анод, а изделие катодом (см. патент РФ №2313581).

Недостатком известного способа является то, что дуга получается непостоянной во времени и подвержена затуханию из-за магнитного дутья, а также сниженный ввод тепла в изделие и повышенный в электроде из-за несимметричности выделения энергии на катоде и аноде.

Известен также способ упрочнения поверхности стальных изделий, (см. патент РФ №2252266), включающий нагрев электрической дугой обратной полярности, зажигаемой между графитовым электродом и поверхностью изделия, при относительном перемещении дуги и изделия электрическую дугу сжимают струей инертного газа до значений плотности мощности 103 Вт/см2.

Недостатком известного способа является то, что образуется узкая площадь поверхности пятна нагрева из-за обжатия столба дуги и невозможно регулировать дугу в процессе закалки.

Известен также способ упрочнения поверхности стальных изделий, принятый за прототип (см. патент РФ №2536854), включающий нагрев изделия электрической дугой переменного тока с прямоугольной формой импульсов, при этом регулируют тепловложение дуги путем изменения силы или частоты тока в положительной и отрицательной полуволнах тока с изменением их продолжительности.

Недостатком известного способа, принятого за прототип, является то, что электрической дугой переменного тока невозможно удержать дугу на электроде.

Техническим результатом изобретения является повышение твердости и износостойкости поверхности изделия, регулирование глубины упрочненного слоя.

Указанный технический результат достигается тем, что в способе электродугового упрочнения стальных изделий, включающем нагрев поверхности изделия электрической дугой, зажигаемой между неплавящимся электродом и поверхностью изделия, регулирование тепловложения дуги путем изменения силы тока, согласно заявляемому изобретению поверхность изделия нагревают электрической дугой прямой полярности, а тепловложение дуги регулируют изменением угла заточки неплавящегося электрода от 45 до 85±2° и скорости вращения детали.

Заявляемый способ поясняется чертежом, где показана схема обработки изделия по заявляемому способу.

Заявляемый способ осуществляют следующим образом. К горелке 1 и изделию 2 подводят электрический ток. В горелке 1 закреплен неплавящийся электрод 3 выполненный в виде конуса с площадкой на вершине конуса, между неплавящимся электродом 3 и поверхностью изделия 2 образуется электрическая дуга 4. Под воздействием электрической дуги 4 на изделии 2 образуется закаленный слой 5 охлаждаемый водой 6.

Электрическую дугу 4 можно регулировать за счет изменения ее длины и силы тока. Поверхность изделия 2 постоянно перемещается относительно электрической дуги 4. На поверхности изделия 2 образуется закаленный слой 5. Тепловложение электрической дуги и ширина закаленного слоя 5 зависит от величины тока и величины площадки на вершине конуса неплавящегося электрода 3, а также расхода защитного газа аргона.

Пример конкретного применения способа

Практическое применение предлагаемого способа проводили на наплавленной поверхности образца из стали 30ХГСА диаметром 200 мм и длиной 200 мм. Упрочнение поверхности образца выполнялось на автоматической установке. В горелке закрепили неплавящийся электрод с углом заточки 75±2° с площадкой на вершине конуса 2 мм, упрочнение выполняли при силе тока от 40 до 90 А и длиной электрической дуги 3 мм, со скоростью вращения изделия от 0,009 до 0,02 об/с в среде защитного газа (аргон). Упрочнение выполняли сплошным нанесением закалочных дорожек с последующим охлаждением водой. Было установлено, что при регулировке заявленных параметров можно получить максимальную глубину упрочнения с высокими значениями твердости и износостойкости.

Так, при увеличении скорости обработки и силы тока, глубина упрочненной поверхности уменьшается. При уменьшении скорости обработки и уменьшении силы тока, глубина упрочненного слоя увеличивается. При увеличении силы тока и уменьшении скорости упрочнения, глубина упрочненного слоя уменьшается.

Изменение скорости упрочнения позволяет регулировать тепловложение, а следовательно, и глубину упрочненного слоя. Увеличение скорости упрочнения и увеличение силы тока приводит к уменьшению глубины упрочнения и уменьшению значений твердости.

Способ электродугового упрочнения стальных изделий, включающий нагрев поверхности изделия электрической дугой, зажигаемой между неплавящимся электродом и поверхностью изделия, и регулирование тепловложения дуги путем изменения силы тока, отличающийся тем, что изделие вращают в процессе обработки со скоростью от 0,009 до 0,02 об/с, а регулирование тепловложения дуги осуществляют изменением силы тока от 40 до 90 А, при этом поверхность изделия нагревают электрической дугой прямой полярности, причем используют неплавящийся электрод с углом заточки от 45 до 75±2°.



 

Похожие патенты:

Изобретение относится к металлургии, в частности к способу термомеханической обработки листового и сортового проката из низко- и среднеуглеродистых конструкционных сталей.

Изобретение относится к инструментальной промышленности, а именно к способу лазерной обработки детали вращения из инструментальной стали. Осуществляют вращение и осевое перемещение детали с обработкой ее поверхности лучом лазера непрерывного действия со степенью перекрытия лазерных дорожек 10-15%.

Ось для рельсовых транспортных средств изготовлена из термообработанного материала, при этом во всех цилиндрических частях (2a) и переходных частях (2b) по всей длине (L) поверхности оси (1) поверхность оси (1) формируется усиленным, индукционно упрочненным слоем (2), имеющим равномерную глубину от поверхности оси (1), и этот индукционно упрочненный слой (2) продолжается с переходным слоем (3) с постепенно снижающимся градиентом упрочнения.

Изобретение относится к области черной металлургии, а именно к технологии термической обработки крепежных деталей ядерных реакторов. В способе термической обработки крепежных деталей ядерных реакторов из сталей бейнитного класса, включающем нагрев под закалку заготовок от температур на 30-50°С выше точки Ас3 с выдержкой 1,5-2 мин/мм сечения и последующий высокий отпуск при температуре 630-700°С с выдержкой 5-6 мин/мм сечения с охлаждением на воздухе, механическую обработку готовых деталей с припуском на химико-термическую обработку, химико-термическую обработку и последующее термическое улучшение, согласно изобретению после химико-термической обработки детали повторно подвергают закалке и высокому отпуску по идентичному режиму предварительной термической обработки и осуществляют дополнительный отпуск в диапазоне температур 450±10°С с выдержкой 2,0-7,0 часов с дальнейшим охлаждением на воздухе.

Изобретение относится к области металлургии. Для обеспечения каждой листовой стали исключительными качествами, такими как минимально возможный разброс свойств, осуществляют термическую обработку в линии, содержащей секцию нагрева, секцию выдержки и секцию охлаждения с системой охлаждения и обеспечением режима TPtarget.

Изобретение относится к области металлургии. Для исключения образования температурных неоднородностей в подложке, получения заданной микроструктуры и механических свойств способ охлаждения металлической подложки (1), которая перемещается в продольном направлении (А), включает эжекцию по меньшей мере одной первой струи охлаждающей жидкости на первую поверхность указанной подложки (1) и по меньшей мере одной второй струи охлаждающей жидкости на вторую поверхность указанной подложки (1).

Изобретение относится к области металлургии. Для обеспечения равномерных механических свойств стального листа и повышения качества получают лист из стали с заданным химическим составом и микроструктурой mtarget, содержащей по меньшей мере одну фазу из феррита, мартенсита, бейнита, перлита, цементита и аустенита.

Изобретение относится к области металлургии, в частности к технологии горячей прокатки стали. Для определения структурного состояния прокатанного металла по технологическим параметрам прокатки выплавляют сталь требуемого химического состава, осуществляют ее прокатку с фиксацией технологических параметров и определяют структурное состояние полученного проката в зависимости от реализованных технологических параметров.

Изобретение относится к нанесению покрытия на стальные листы или стальные полосы. Предложен способ нанесения покрытия на стальной лист или стальную полосу, включающий нанесение основного слоя покрытия на основе алюминия методом горячего погружения и освобождение поверхности основного слоя покрытия от естественного слоя оксида алюминия с осаждением переходных металлов или соединений переходных металлов на освобожденную поверхность основного слоя покрытия с образованием верхнего слоя, при этом верхний слой осаждают в виде плоского слоя, имеющего распределение слоя на основе железа в диапазоне от 7 до 25 мг/м2.
Изобретение относится к электромеханическому дорнованию. Осуществляют перемещение дорна вдоль оси отверстия детали с плавным изменением плотности электрического тока, пропускаемого через место контакта дорна с поверхностью отверстия детали и формирование на поверхности ее отверстия закаленных кольцевых участков с различной твердостью.
Наверх