Способ и устройство для получения водорода

Группа изобретений относится к способу и устройству для извлечения водорода из сырого газа, полученного в коксовой печи. Способ включает сжатие сырого газа (а), снижение кислорода в сыром газе (а) с использованием нетепловой плазмы и удаление примесей из сырого газа (а) посредством адсорбции с перепадом давления. Устройство (200) включает коксовую печь (110), генератор (150) плазмы, предназначенный для получения нетепловой плазмы в сыром газе (а), средство (120) сжатия и установку (140) адсорбции с перепадом давления, предназначенную для удаления примесей из сырого газа (а) и обеспечения водорода (b). Использование нетепловой плазмы обеспечивает эффективное обеднение сырого газа по кислороду и усовершенствованное, экономичное и безопасное извлечение водорода из сырого газа. 2 н. и 10 з.п. ф-лы, 5 ил.

 

Изобретение относится к способу и устройству для извлечения водорода из сырого газа, полученного в коксовой печи в соответствии с преамбулой независимых пунктов формулы изобретения.

Уровень техники

Сталеплавильные предприятия могут включать коксовальные установки, в которых получают кокс, необходимый для производства стали. Кокс можно получить, например, из битуминозного угля в так называемых коксовых печах. Можно обеспечить несколько коксовых печей, в частности, в форме так называемой батареи коксовых печей, то есть последовательно расположенных коксовых печей.

Дополнительным продуктом, получаемым наряду с коксом, является так называемый коксовый газ/сырой газ. Этот сырой газ может включать примерно от 60% до 65% водорода, примерно от 20% до 25% метана и, помимо прочего, меньшие доли азота, моноксида углерода, диоксида углерода, кислорода и тяжелых углеводородов. Точный состав обычно изменяется в зависимости от того, как работает коксовая печь и какой уголь применяется.

Из сырого газа можно получить водород в очень чистой форме. Для этого сырой газ можно сначала подвергнуть сжатию, а затем направить в установку адсорбции с перепадом давления. Адсорбция с перепадом давления дает возможность удалить примеси из сырого газа и обеспечить поток водорода высокой чистоты. Если здесь и ниже речь идет о водороде, полученном из сырого газа, следует понимать, что это охватывает также газовую смесь, имеющую высокое содержание водорода, в частности, по меньшей мере 90, 95 или 99% мольн.

Извлечение водорода из сырого газа, полученного в коксовой печи, с помощью адсорбции с перепадом давления известно само по себе, а более конкретно, описано, например, в работе Yang и Lee: Adsorption dynamics of a layered bed PSA for H2 recovery from coke oven gas (Динамика адсорбции при использовании адсорбции с перепадом давления на слоях для извлечения H2 из коксового газа), AlChE Journal, Том 44, Выпуск 6, Июнь 1998, сс. 1325-1334; или Takeuchi et al., Hydrogen Separation from COG (Coke Oven Gas) by PSA, (Отделение водорода от коксового газа посредством адсорбции с перепадом давления), Journal of the Fuel Society of Japan 62(12), cc. 989-994, декабрь 1983.

Однако в таких процессах проблема может заключаться в том, что коксовые печи, которые обычно работают при отрицательном давлении, могут страдать от негерметичности. Случаи негерметичности могут встречаться более часто, в частности, с увеличением их возраста. Негерметичность может привести к поступлению атмосферного воздуха и, таким образом, также кислорода, в коксовую печь и, следовательно, в сырой газ. Чем выше доля кислорода в сыром газе, тем выше риск образования горючей смеси с водородом или другими газами внутри установки адсорбции с перепадом давления на некоторых технологических стадиях, и/или в остаточном газе установки адсорбции с перепадом давления.

Кислород можно подвергнуть каталитическому превращению, например, проводя реакцию кислорода с водородом с получением воды/водяного пара, увеличивая таким образом чистоту водорода. Такие катализаторы известны, например, как катализаторы "DeOxo". Однако, ввиду того, что сырой газ содержит много примесей, такие катализаторы могут быстро отравляться и не иметь длительного срока службы. Соответственно, такие катализаторы используют только после адсорбции с перепадом давления, таким образом увеличивая чистоту водорода, но не избегая/уменьшая образования способной к воспламенению смеси, и, в частности обеспечивая в результате влажный газ, который обычно следует подвергать последующей сушке.

Исходя из этих предпосылок, целью данного изобретения является обеспечение усовершенствованной и, особенности, более безопасной возможности извлечения водорода из сырого газа, полученного в коксовой печи.

Описание изобретения

Данной цели достигают с помощью способа и устройства для извлечения водорода, которые имеют отличительные особенности в соответствии с независимыми пунктами формулы изобретения. Воплощения изобретения обеспечены зависимыми пунктами формулы изобретения и последующим описанием.

Преимущества данного изобретения

Данное изобретение исходит из известного самого по себе способа/устройства для извлечения водорода из сырого газа, полученного в коксовой печи, например, как это было более конкретно описано вначале. Сырой газ, полученный в коксовой печи, сначала подвергают сжатию, а затем удаляют примеси, используя адсорбцию с перепадом давления.

Согласно данному изобретению, содержание кислорода в сыром газе снижают, используя перед адсорбцией с перепадом давления нетепловую плазму. Под нетепловой плазмой здесь следует понимать плазму, которая не находится в тепловом равновесии; то есть электроны в этой плазме обладают значительно большей энергией/температурой, чем остальные составляющие, которые часто находятся лишь при комнатной или несколько более высокой температуре, например, примерно до 325 K. Температура электронов может составлять, например, примерно 105 K или выше.

В противоположность этому, другим типом плазмы является тепловая плазма, в которой электроны и остальные составляющие имеют примерно одинаковую энергию/температуру, которая обычно является очень высокой, например, от нескольких тысяч градусов Кельвина до 106 K.

Нетепловую плазму можно получить, в частности, диэлектрическим барьерным разрядом (ДБР, известным также как тихий электрический разряд), или с использованием микроволн. В первом случае между двумя электродами может быть обеспечен диэлектрический материал/диэлектрический слой, и к электродам прилагают переменное электрическое поле. В противоположность этому, микроволны можно получить в магнетроне и направить в реакционное пространство.

При использовании нетепловой плазмы находящийся в сыром газе кислород может реагировать с другими фракциями, находящимися в сыром газе, и, таким образом, его можно удалить из сырого газа или уменьшить его содержание. Соответственно, можно уменьшить образование горючей смеси кислорода и водорода и/или других воспламеняющихся газов при проведении адсорбции с перепадом давления/в образующихся там остаточных газах. В зависимости от типа устройства можно получить снижение содержания кислорода до менее чем 200 млн. ч. (в расчете на количество вещества, то есть 0,02% мольн.), в то время как исходная смесь газов обычно - по меньшей мере периодически - способна к возгоранию в установке адсорбции с перепадом давления (по меньшей мере на некоторых технологических стадиях) или в остаточном газе установки адсорбции при перепадах давления, при содержании (кислорода) выше 0,6% мольн., в расчете на способные к возгоранию смеси. Таким образом, можно сделать коксовые газы/сырые газы пригодными для эффективного извлечения водорода, даже при содержании кислорода выше 0,6% мольн.

Другое особое преимущество заключается в том, что это также дает возможность модернизировать все установки для извлечения водорода из сырого газа из коксовой печи. Коксовые печи могут иметь максимальный срок службы от 30 до 70 лет, что обычно означает, что увеличивается негерметичность печи и, таким образом, содержание кислорода в сыром газе.

Предпочтительно сырой газ обедняют по кислороду с использованием тепловой плазмы, чтобы активировать каталитическое удаление кислорода. Такое каталитическое удаление кислорода можно осуществить с применением, в частности, катализаторов, содержащих платину, и/или палладий, и/или медь, и/или цинк, в частности, нанесенные на алюминий или оксид алюминия. Катализатор может быть расположен в плазменном поле тепловой плазмы или ниже плазменного поля по ходу потока сырого газа. Катализаторы могут также иметь такую конфигурацию, чтобы, в частности, удалять из сырого газа и высшие углеводороды, или преобразовывать их. Для этого, в частности, пригодны содержащие никель материалы. Также возможна комбинация нескольких катализаторов/материалов, особенно различных.

Из-за получения нетепловой плазмы не требуется высоких технологических температур, и, таким образом, при использовании катализатора - в противоположность обычному применению - спекание катализатора происходит лишь в очень малой степени, если оно вообще происходит. Таким образом, упомянутые вначале катализаторы (так называемые DeOxo) можно также применять выше абсорбера с перепадом давления по ходу потока. В целом, обеднение по кислороду можно осуществить более эффективно и результативно. В частности, полагают, что активация нетепловой плазмой позволяет уменьшить введение добавок в катализатор, что приводит к экономии средств.

Предпочтительно сырой газ подвергают предварительной обработке перед проведением адсорбции с перепадом давления и после того, как сырой газ подвергают сжатию. Предварительную обработку можно осуществить, в частности, с помощью адсорбирующих или каталитических средств, и/или регенеративно или нерегенеративно, и/или с использованием гибридного процесса, включающего адсорбцию с перепадом давления/мембранный процесс. В случае использования гибридного процесса адсорбция с перепадом давления/мембрана, соответствующую мембрану можно установить выше адсорбции с перепадом давления, чтобы уже выше адсорбции по ходу потока можно было удалить некоторое количество примесей. Содержание кислорода в сыром газе можно снизить с использованием нетепловой плазмы до предварительной обработки сырого газа перед адсорбцией с перепадом давления, или после нее. Такая предварительная обработка выше адсорбции с перепадом давления по ходу потока улучшает удаление примесей.

Содержание кислорода в сыром газе можно снизить с применением нетепловой плазмы после того, как сырой газ подвергают сжатию. Следовательно, если предварительную обработку не проводят, получение нетепловой плазмы можно осуществить между сжатием (то есть соответствующими средствами сжатия) и адсорбцией с перепадом давления (то есть соответствующей установкой адсорбции с перепадом давления). Если предварительную обработку проводят, получение нетепловой плазмы можно провести между сжатием и предварительной обработкой, или между предварительной обработкой и адсорбцией с перепадом давления. Любой из этих вариантов может быть более эффективным, в зависимости от ситуации.

Однако особенно предпочтительно, если содержание кислорода в сыром газе снижают с использованием нетепловой плазмы перед тем, как сырой газ подвергают сжатию. Таким образом, получение нетепловой плазмы проводят перед сжатием (то есть выше соответствующих средств сжатия по ходу потока). Это самый ранний из возможных пунктов в способе, которым можно провести обеднение по кислороду. В частности, это является предпочтительным, если углеводороды можно окислить другим способом, чтобы уменьшить забивание средств сжатия.

Устройство для извлечения водорода из сырого газа включает коксовую печь, в которой может быть получен сырой газ; средства сжатия, в которые могут подавать сырой газ из коксовой печи и которые предназначены для осуществления сжатия сырого газа; и установку адсорбции с перепадом давления, в которую сырой газ может быть направлен после выхода из средств сжатия, и которая выполнена с возможностью удаления примесей из сырого газа и получения водорода. Также обеспечен генератор плазмы, который расположен выше установки адсорбции с перепадом давления по ходу потока и предназначен для получения нетепловой плазмы в сыром газе.

Для того, чтобы избежать повторений, в отношении дополнительных предпочтительных примеров воплощения устройства по данному изобретению и их преимуществ ссылаются на вышеприведенные замечания, которые применяют соответствующим образом.

Ниже данное изобретение освещено более конкретно, со ссылкой на сопровождающие чертежи, которые изображают различные части устройства и которые используют для освещения являющихся предметом данного изобретения мероприятий.

Краткое описание чертежей

Фиг. 1 изображает известное устройство для получения водорода в виде технологической схемы.

Фиг. 2 изображает предпочтительное воплощение устройства по данному изобретению в виде технологической схемы.

Фиг. 3 изображает дополнительное предпочтительное воплощение устройства по данному изобретению в виде технологической схемы.

Фиг. 4 изображает дополнительное предпочтительное воплощение устройства по данному изобретению в виде технологической схемы.

Фиг. 5 изображает дополнительное предпочтительное воплощение устройства по данному изобретению в виде технологической схемы.

Подробное описание чертежей

Фиг. 1 изображает схему устройства 100 для получения водорода (H2) из сырого газа, посредством которого на начальном этапе будет разъяснен способ получения водорода, на котором основано данное изобретение.

В коксовой печи 110, которая может также представлять собой так называемую батарею коксовых печей, получают не только кокс, но также и коксовый газ/сырой газ, который по трубопроводу 115 подают, в виде потока, к средствам 120 сжатия, которые могут представлять собой, например, компрессор. Этот сырой газ может содержать, например, примерно от 60% до 65% водорода, примерно от 20% до 25% метана и, кроме всего прочего, меньшие количества азота, моноксида углерода, диоксида углерода, кислорода и тяжелых углеводородов. Точный состав может изменяться в зависимости от того, как работает коксовая печь и какой уголь применяют.

В то время как сырой газ из коксовой печи 110 обычно находится при слабом отрицательном давлении, установка адсорбции с перепадом давления требует, например, давления от 0,5 до 1,0 МПа (от 5 до 10 бар), а в некоторых случаях больше, которое создают средствами сжатия. После того, как сырой газ был подвергнут сжатию в средствах 120 сжатия, то есть после того, как давление было увеличено, сырой газ подают в установку 140 абсорбции с перепадом давления.

Установка 140 адсорбции с перепадом давления удаляет примеси из сырого газа посредством адсорбции с перепадом давления. Под примесями следует понимать, в частности, те составляющие сырого газа (который представляет собой газовую смесь), которые являются нежелательными, то есть в данном случае все фракции, исключая водород. Можно понять, что адсорбция с перепадом давления не может полностью удалить все примеси. Типичными значениями для чистоты водорода, который можно получить с помощью установки 140 адсорбции с перепадом давления в виде потока b, являются, например, по меньшей мере 98% мольн. или выше.

Газ/фракции (остаточный газ), удаленный в установке 140 адсорбции с перепадом давления, подают в трубопровод 115 в виде потока b, и могут затем направить для последующего применения, например, в качестве отопительного газа.

Для подробного описания приведенного здесь способа и, в частности, адсорбции с перепадом давления, сделана отсылка, например, на техническую литературу, цитированную вначале.

Как упомянуто, сырой газ (поток а) может иметь содержание кислорода 0,6% мольн. или выше, которое может быть получено, в частности, из-за негерметичности коксовой печи 110 и всосанного в результате этого атмосферного воздуха.

Фиг. 2-5 представляют собой схемы различных предпочтительных воплощений устройства по данному изобретению, с помощью которых данное изобретение будет освещено более подробно. В значительной степени, в частности с точки зрения основных компонентов и соответствующих технологических стадий, устройства, изображенные на Фиг. 2-5 соответствуют устройству 100 Фиг. 1. Таким образом, также делается отсылка на вышеприведенное описание, и идентичные компоненты обозначены идентичными численными сносками.

Фиг. 2 изображает устройство 200, в котором - по сравнению с устройством 100 Фиг. 1 - между трубопроводом 115 и средствами 120 сжатия обеспечены генератор 150 плазмы и катализатор 151.

Генератор 150 плазмы может представлять собой, например, аппарат, включающий два электрода, на которые может быть подано переменное напряжение, и между которыми введен диэлектрический материал. Это дает возможность производить нетепловую плазму в сыром газе (поток а).

Катализатор 151 может быть, например, катализатором, содержащим палладий, платину, медь или цинк, нанесенные на поверхности алюминия. Также допустимой является комбинация этих материалов/катализаторов, каждый из которых содержит один из этих материалов.

Катализатор 151 может быть расположен в плазменном поле, образованном при получении нетепловой плазмы. Таким образом, в случае диэлектрического барьерного разряда катализатор 151 может быть расположен, например, между диэлектрическим материалом и соответствующим электродом. Однако, допустимо также, чтобы катализатор 151 был расположен ниже генератора 150 плазмы по ходу потока а.

Таким образом, получение нетепловой плазмы дает возможность проводить каталитическое удаление кислорода/обеднение сырого газа по кислороду особенно эффективно и, в частности, при сравнительно низких температурах. Таким образом, при последующем сжатии и при проведении адсорбции 140 с перепадом давления сырой газ уже значительно обеднен по кислороду, так что способная к воспламенению смесь больше не присутствует, и возможно безопасное удаление дополнительных примесей.

Типичные значения чистоты водорода, который можно затем получить с помощью установки 140 адсорбции с перепадом давления в виде потока b, составляют, например, по меньшей мере 99% мольн. или выше, в то время как, в частности, также возможной является величина 99,9999% мольн.

Фиг. 3 изображает устройство 300, в котором - по сравнению с устройством 200 Фиг. 2 - между средствами 120 сжатия и установки 140 адсорбции с перепадом давления обеспечены средства 130 предварительной обработки.

Средства 130 предварительной обработки могут, например, включать мембрану, которая позволяет удалять примеси даже до проведения адсорбции с перепадом давления. Таким образом, мембрана, совместно с установкой 140 адсорбции с перепадом давления, обеспечивает двухстадийный гибридный способ удаления примесей, включающий адсорбцию с перепадом давления/мембрану.

Фиг. 4 изображает устройство 400, в котором - по сравнению с устройством 300 Фиг. 3 -генератор 150 плазмы и катализатор 151 обеспечены не между трубопроводом 115 и средствами 120 сжатия, а между средствами 120 сжатия и средствами 130 предварительной обработки.

Фиг. 5 изображает устройство 500, в котором - по сравнению с устройством 400 Фиг. 4 - генератор 150 плазмы и катализатор 151 обеспечены не между средствами 120 сжатия и средствами 130 предварительной обработки, а между средствами 130 предварительной обработки и установкой 140 адсорбции с перепадом давления.

Варианты, изображенные на Фиг. 4 и 5, могут позволить более эффективно удалять кислород по сравнению с вариантом Фиг. 3, в зависимости от имеющихся устройств/опций.

Понятно, что возможны также и дополнительные варианты. Так, например, в устройстве без средств предварительной обработки, как, например, показано на Фиг. 2, генератор 150 плазмы и катализатор 151 могут также быть обеспечены между средствами сжатия и установкой адсорбции с перепадом давления.

1. Способ получения водорода (b) из сырого газа (a), полученного в коксовой печи (110), в котором сырой газ (a), полученный в коксовой печи (110), сначала подвергают сжатию, и в котором примеси впоследствии удаляют из сырого газа (a) посредством адсорбции с перепадом давления,

отличающийся тем, что содержание кислорода в сыром газе (а) снижают с использованием нетепловой плазмы перед проведением адсорбции с перепадом давления.

2. Способ по п. 1, в котором содержание кислорода в сыром газе (а) снижают с использованием тепловой плазмы для активации каталитического удаления кислорода.

3. Способ по п. 2, в котором каталитическое удаление кислорода можно проводить с использованием, в частности, платины, и/или палладия, и/или меди, и/или цинка, в частности нанесенных на алюминий или оксид алюминия.

4. Способ по п. 2 или 3, в котором каталитическое удаление кислорода проводят с использованием по меньшей мере одного катализатора (151), помещенного в плазменном поле тепловой плазмы, или ниже плазменного поля по ходу потока сырого газа (а).

5. Способ по любому из предшествующих пп. 1-4, в котором нетепловую плазму получают с помощью диэлектрического барьерного разряда или с использованием микроволн.

6. Способ по любому из предшествующих пп. 1-5, в котором сырой газ (а), перед проведением адсорбции с перепадом давления и после того, как сырой газ (а) подвергают сжатию, предварительно обрабатывают, в частности, с помощью адсорбционных или каталитических средств, и/или регенеративно или нерегенеративно, и/или с использованием гибридного процесса, включающего адсорбцию с перепадом давления/мембранный процесс.

7. Способ по п. 6, в котором содержание кислорода в сыром газе (а) снижают с использованием нетепловой плазмы перед тем, как сырой газ (а) предварительно обрабатывают перед адсорбцией с перепадом давления, или после этого.

8. Способ по любому из предшествующих пп. 1-7, в котором содержание кислорода в сыром газе (а) снижают с использованием нетепловой плазмы после того, как сырой газ (а) подвергают сжатию.

9. Способ по любому из пп. 1-6, в котором содержание кислорода в сыром газе (а) снижают с использованием нетепловой плазмы перед тем, как сырой газ (а) подвергают сжатию.

10. Устройство (200, 300, 400, 500) для получения водорода (b) из сырого газа (а), включающее коксовую печь (110), выполненную с возможностью получения сырого газа (а), средства (120) сжатия, выполненные с возможностью подачи сырого газа из коксовой печи (110) и предназначенные для сжатия сырого газа (а), и установку (140) адсорбции с перепадом давления, выполненную с возможностью подачи в нее сырого газа (а) после выхода его из средств (120) сжатия и предназначенную для удаления примесей из сырого газа (а) и обеспечения водорода (b),

отличающееся тем, что выше установки (140) адсорбции с перепадом давления по ходу потока расположен генератор (150) плазмы, который предназначен для получения нетепловой плазмы в сыром газе (а).

11. Устройство (200, 300, 400, 500) по п. 10, дополнительно включающее по меньшей мере один катализатор (151) для удаления кислорода из сырого газа (а), расположенный в плазменном поле нетепловой плазмы, производимой генератором (150) плазмы, или ниже плазменного поля по ходу технологического потока сырого газа (а).

12. Устройство (300, 400, 500) по п. 10 или 11, дополнительно включающее средства (130) предварительной обработки, выполненные с возможностью пропускания через них сырого газа (а) перед подачей его в установку(140) адсорбции с перепадом давления.



 

Похожие патенты:

Изобретение может быть использовано при создании компонентов электронной техники, сенсоров, суперконденсаторов, электромагнитных экранов, контрастирующих материалов для магниторезонансной томографии, в системах магнитной записи информации.

Изобретение относится к нанотехнологии. В плазмотрон подают плазмообразующий поток, содержащий исходный углеродсодержащий материал и буферный газ.

Изобретение может быть использовано в кабельной, резинотехнической и электротехнической промышленности при изготовлении электропроводных резин и пластиков, а также химических источников тока и топливных элементов.

Изобретение относится к химической промышленности и строительству и может быть использовано при модифицировании пластичных смазок, эпоксидных смол и бетонов. В ёмкости для исходной суспензии 1 готовят смесь, содержащую жидкость и 10-20 мас.% кристаллического графита.

Изобретение может быть использовано в биотехнологии и медицине для изготовления препаратов, подавляющих жизнедеятельность патогенных микроорганизмов. Для получения наноматериала с антимикробными свойствами на основе оксида графена и наночастиц оксида серебра и оксида меди (II) в водную суспензию оксида графена поочередно вводят наночастицы оксида серебра и оксида меди (II) при следующем соотношении компонентов, мас.%: оксид графена 2-6, наночастицы оксида серебра 4-8, наночастицы оксида меди (II) 8-16, вода дистиллированная – остальное.
Изобретение относится к нанотехнологии и может быть использовано для 2D-печати проводящих дорожек, RFID-антенн, тонкопленочных суперконденсаторов, а также для окрашивания различных тканей и бумаги.

Настоящее изобретение относится к способу получения графена. Данный способ включает диспергирование исходного графитового материала с получением графенографитного продукта диспергирования в виде содержащей графен и графитовые элементы диспергированной смеси с последующим выделением графена из полученной диспергированной смеси.

Изобретение может быть использовано в электронной технике для изготовления электрохимических источников тока, сенсоров, суперконденсаторов и систем магнитной записи информации, в медицине для изготовления электромагнитных экранов, контрастирующих материалов для магниторезонансной томографии, при очистке воды в комбинации с магнитным сепарированием, а также при изготовлении антистатических покрытий и материалов, поглощающих электромагнитное излучение в различных диапазонах длины волны.

Изобретение относится к химической технологии и может быть использовано для получения материалов, поглощающих расплавы химических веществ. Сначала подготавливают исходный материал в виде смеси, содержащей резольную смолу и порообразователь - раствор щавелевой кислоты в многоатомном спирте, в которую вводят кислородсодержащую соль никеля в качестве активирующей добавки.

Группа изобретений относится к установке и способу риформинга, в частности для получения CO-обогащенного синтез-газ в условиях низкого соотношения S/C, а также к химическому реактору для риформинга и реакционной трубе, размещенным в установке.

Изобретение относится к способу эксплуатации промышленной установки, содержащей адсорбер. Промышленная установка (100) содержит адсорбер (10), который выпускает газовый поток (G1), загруженный способным поглощаться веществом, с заданным массовым расходом.
Наверх