Способ генерации случайных чисел

Изобретение относится к области генерации случайных чисел для прикладного использования в криптографии, численном моделировании и других областях науки и техники. При реализации разработанного способа используют программно-аппаратный комплекс, состоящий из аппаратного источника случайного сигнала, подключенного к модулю обработки сгенерированного случайного сигнала, выполненного с возможностью трансформации сгенерированного случайного сигнала в последовательность цифровых случайных чисел. В качестве аппаратного источника случайного сигнала используют электронную систему, уровень шума которой, используемого в качестве случайного сигнала, определен эффектом телеграфного шума. Модуль обработки сигнала состоит из усилителя сигнала и интерфейса ввода вывода, выполненный с возможностью прямого подключения к внешнему устройству. В качестве внешнего устройства используют персональный компьютер. Технический результат заключается в получении последовательности независимых случайных чисел, которая может быть использована для моделирования физических процессов с помощью программного обеспечения, моделирования поведения квантовых систем, а также для задач криптографической защиты. 2 з.п. ф-лы.

 

Изобретение относится к области генерации случайных чисел для прикладного использования в криптографии, численном моделировании и других областях науки и техники

Известен (RU, патент 2246129, опубл. 10.02.2005) способ генерации случайных чисел, относящийся к криптографии и средствам защиты информации от несанкционированных действий. Способ генерации случайных чисел с использованием n-разрядного регистра сдвига с обратной связью, разрядом которого выбран q-ичный символ (q=21, 1=8, 16 бит), в цепях обратной связи осуществляют не менее трех двухпараметрических операций над q-ичными символами на основе случайных таблиц замены Тк, каждая из которых содержит 21 неповторяющихся значений двоичных комбинаций длиной 1, начальное заполнение регистра сдвига с обратной связью и таблиц случайной замены выполняют от физического датчика случайных чисел неповторяющимися значениями случайных чисел, для чего сравнивают очередное значение случайного числа с ранее записанными значениями случайных чисел, при совпадении нового значения числа с любым из ранее записанных, новое значение отбрасывают, при несовпадении - записывают в очередной разряд регистра сдвига и очередную строку таблицы замены, для генерации очередного случайного числа выбирают пять значений, указывающих номера разрядов регистра сдвига, первая и вторая пары значений указывают номера разрядов регистра сдвига для выполнения соответственно первой и второй операций, операндами третьей операции являются результаты выполнения первых двух операций, операндами которых являются значения q-ичных символов, записанные в данном такте в разрядах регистра сдвига с указанными номерами, для выполнения всех операций находят в используемой таблице Тк значение первого операнда и считывают из таблицы Тк значение, которое отстоит на число строк используемой таблицы Тк, совпадающее с двоичным значением второго операнда, результат выполнения третьей операции, являющийся очередным результатом генерации, записывают в последний выбранный разряд регистра сдвига, после чего производят сдвиг содержимого регистра сдвига на один q-ичный разряд.

Недостатком известного способа является отсутствие качества непредсказуемости и наличие заметных корреляций в последовательности псевдослучайных чисел, что приводит к плохим статистическим свойствам псевдослучайных чисел.

Известен также (заявка ЕР 2012/072297, опубл. 09.11.2012) способ генерирования случайного числа, включающий предоставление матрицы из, по меньшей мере, двух детекторов, и освещение упомянутой матрицы из, по меньшей мере, двух детекторов световым лучом, содержащим последовательность импульсов в виде одиночных фотонов из источника света, способного генерировать последовательность импульсов в виде одиночных фотонов на основе структуры квантовых точек, обнаружение последовательности импульсов в виде одиночных фотонов с использованием матрицы из, по меньшей мере, двух детекторов, при этом каждый детектор формируется квантовой точкой, которая связана с некоторым значением и генерирование случайного числа на основе значений, связанных с детектором, обнаруживающим последовательность импульсов в виде одиночных фотонов.

Недостатком известного способа следует признать сложность генерации классической цифровой случайной последовательности.

Известен также (RU, патент 2613027, опубл. 14.03.2017) квантовый генератор случайных чисел, содержащий источник фотонов, однофотонный детектор, реагирующий на отдельные фотоны, создаваемые источником фотонов, и схему оцифровки и последующей обработки сигнала детектора. В данном квантовом генераторе используется одиночный лавинный фотодетектор, что ограничивает скорость генерации случайных чисел, т.к. главная проблема при фотодетектировании однофотонных сигналов одиночными лавинными фотодетекторами состоит в учете мертвого времени последних, что ограничивает тактовую частоту и темп срабатываний фотодетектора. При этом тактовая частота не может превышать обратное время рассасывания лавины в детекторе.

Недостатком известного способа следует признать сложность генерации классической цифровой случайной последовательности.

Известен (WO 2015/168798, опубл. 12.11.2015) способ генерации, по меньшей мере, одного случайного числа, включающий следующие шаги: квантовое туннелирование зарядов из одного проводника в другой проводник через квантовый барьер с туннельным переходом, прием случайного сигнала, порожденного квантовым туннелированием зарядов, сопоставление случайного сигнала со случайным числом и генерация сигнала, указывающего случайное число.

Сложность замера и обработки дробового шума при туннелировании электронов через энергетический барьер.

Техническая проблема решаемая с использованием разработанного способа состоит в генерации последовательности независимых случайных чисел, причем выпадение числа будет не псевдослучайным, вне зависимости от начальных условий. Кроме того, данная последовательность может быть использована для наиболее приближенной к реальности симуляции работы квантового компьютера и квантовой криптографии.

Распределение вероятности выпадения того или иного случайного числа может быть задано заранее с учетом специфики физических процессов, приводящих к генерации последовательности случайных чисел.

Технический результат, достигаемый при реализации разработанного способа состоит в получении последовательности независимых случайных чисел, которая может быть использована для моделирования физических процессов с помощью программного обеспечения, моделирования поведения квантовых систем, а так же для задач криптографической защиты.

Для достижения указанного технического результата предложено использовать разработанный способ генерации случайных чисел. Согласно разработанному способу используют программно-аппаратный комплекс, состоящий из аппаратного источника случайного сигнала, подключенного к модулю обработки сгенерированного случайного сигнала, выполненного с возможностью трансформации сгенерированного случайного сигнала в последовательность цифровых случайных чисел, причем в качестве аппаратного источника случайного сигнала используют электронную систему, уровень шума которой, используемого в качестве случайного сигнала, определен эффектом телеграфного шума. При реализации разработанного способа предпочтительно используют модуль обработки сигнала, состоящий из усилителя сигнала и интерфейса ввода вывода, выполненный с возможностью прямого подключения к внешнему устройству, в качестве которого обычно используют персональный компьютер.

В качестве аппаратного источника случайного сигнала также можно использовать электрическое сопротивление, выполненное с возможностью изменять величину шума, представляющего собой случайный сигнал, в зависимости от рабочей температуры электрического сопротивления; туннельный барьер для тока электронов, причем уровень случайного сигнала (шума) зависит от наличия и энергетических состояний изолированных квантовых состояний или токопроводящих примесей внутри туннельного барьера, конфигурации, расположения внутри барьера, а так же количества квантовых состояний, рабочей температуры туннельного барьера; транзистор, причем уровень случайного сигнала, в качестве которого использован шум транзистора, который зависит от управляющего сигнала на базе или затворе транзистора, а также от рабочей температуры транзистора; механическую систему, которую искусственно вводят в состояние полной потери корреляций (хаоса). Указанный перечень источников аппаратного сигнала не является исчерпывающим. Возможно использование и других вариантов аппаратного источника случайного сигнала.

В некоторых вариантах реализации разработанного способа в качестве электронной системы может быть использован, по меньшей мере, один колебательный контур, который переходит в режим хаотической эволюции фазы колебаний за счет нелинейных характеристик составляющих электронных компонент и/или нелинейного управляющего сигнала.

В других вариантах реализации разработанного способа в качестве механической системы может быть использован, по меньшей мере, один маятник, который переходит в режим хаотической эволюции фазы колебаний за счет внешнего нелинейного изменения длины нити маятника.

Также в качестве электронной системы может быть использован, по меньшей мере, один домен с магнитным моментом, который переходит в режим хаотической эволюции в магнитном поле нелинейных характеристик внутренних параметров и/или нелинейного управляющего сигнала.

Примером реализации способа генерации случайных чисел может служить электрическое сопротивление, величина шума которого определяется тепловым равновесным шумом, обусловленным тепловым движением носителей заряда в проводнике, в результате чего на концах проводника возникает флуктуирующая разность потенциалов. Эта разница потенциалов имеет случайный характер и может быть усилена, обработана и представлена в виде последовательности случайных чисел.

Аналогичный механизм может быть использован для генерации последовательности с помощью транзистора, случайные флуктуации на базе которого могут быть использованы, усилены с помощью классической схемы усилителя на транзисторах, обработаны и представлены в виде последовательности случайных чисел.

При туннелировании электрона через потенциальный барьер возникает флуктуирующее значение тока на концах барьера за счет единичного заряда электрона, так называемый дробный шум. Этот ток достаточно сложно использовать, в виду очень малого заряда электрона. Для увеличения значения шума до уровня измеримых при прохождении электронов через туннельный барьер может быть использован эффект телеграфного шума, который возникает при туннелировании электронов через взаимодействующие локализованные квантовые состояния внутри потенциального барьера.

В качестве систем, способных генерировать случайные сигналы могут быть так же использованы системы, переходящие в состояние хаоса или потери корреляций. В классической физике иллюстрируется возможность перехода линейных систем с нелинейным взаимодействием и/или под влиянием нелинейных управляющих сигналов в состояние хаоса, то есть в систему с эволюцией полностью не зависящей от начальных состояний и описываемых только вероятностными параметрами. Так же возможен переход в состояние хаоса нелинейных систем под влиянием линейных или нелинейных взаимодействий. Классическим примером может служить маятник (груз на штанге) с изменяющейся периодически точкой подвеса. При достижении определенного момента в амплитуде периодических колебаний точки подвеса, произойдет переворот маятника вокруг точки подвеса и дальнейшая эволюция положения маятника станет непредсказуемой, то есть случайной или стохастической.

Наиболее интересной системой для генерации случайных сигналов может служить магнитный момент ферромагнетика, или набор взаимодействующих магнитных моментов, которые эволюционируют под воздействием внешнего сигнала. В зависимости от характеристик системы, внешний сигнал может быть стохастический или детерминированный. Система вводится в состояние хаоса и за счет сохранения величины магнитного момента может быть использована для генерации последовательности случайных чисел, описывающих измерения квантовых битов и, как следствие, результаты квантовых вычислений.

1. Способ генерации случайных чисел, отличающийся тем, что используют программно-аппаратный комплекс, состоящий из аппаратного источника случайного сигнала, подключенного к модулю обработки сгенерированного случайного сигнала, выполненного с возможностью трансформации сгенерированного случайного сигнала в последовательность цифровых случайных чисел, причем в качестве аппаратного источника случайного сигнала используют электронную систему, уровень шума которой, используемого в качестве случайного сигнала, определен эффектом телеграфного шума.

2. Способ по п. 1, отличающийся тем, что используют модуль обработки сигнала, состоящий из усилителя сигнала и интерфейса ввода вывода, выполненный с возможностью прямого подключения к внешнему устройству.

3. Способ по п. 2, отличающийся тем, что в качестве внешнего устройства используют персональный компьютер.



 

Похожие патенты:

Изобретение относится к устройствам для генерации истинно случайных чисел, включающих в себя цифровую хаотически осциллирующую автономную булеву сеть в качестве источника энтропии.

Изобретение относится к вычислительной технике и электросвязи, предназначено для решения задач защиты компьютерной информации. Генератор псевдослучайных чисел, функционирующий в конечном поле GF(2n), где n>1 - целое, содержащий N регистров 2.1, …, 2.N разрядности n, (N-1) блоков 3.1, …, 3.(N-1) сложения, N блоков 4.1, …, 4.N умножения, причем величина, на которую происходит умножение в (i+1)-м блоке умножения, равна коэффициенту аi характеристического многочлена ϕ(x)=(х+1)λ(x)=xN+aN-1+…+а2х2+а1х+a0, где i=0, 1, …, (N-1), аi ∈ GF(2n), λ(х) - многочлен степени (N-1), примитивный над GF(2n), выходы N-гo регистра 2.N соединены со входами всех блоков 4.1, …, 4.N умножения, выходы (j+1)-х блоков 4.(j+1) умножения и выходы j-x регистров 2.j соединены соответственно с первыми и вторыми входами j-x блоков 3.j сложения, выходы которых соединены со входами (j+1)-х регистров 2.(j+1), где j=1, 2, …, (N-1), дополнительно содержит блок 6 управляющих воздействий и N-й блок 5 сложения, первые входы которого подключены к выходам первого блока 4.1 умножения, а выходы соединены со входами первого регистра 2.1, вторые входы N-го блока 3.N сложения и третьи входы j-x блоков 3.j сложения подключены к соответствующим выходам блока 6 управляющих воздействий.

Группа изобретений относится к системе и способу отправки сообщений в транспортных средствах. Раскрыта система отправки сообщений, содержащая компьютер, включающий в себя процессор и память, причем память хранит команды, исполняемые компьютером, чтобы принимать биометрические данные о пассажире или водителе транспортного средства с носимого устройства; по меньшей мере частично на основании биометрических данных определять бдительность пассажира или водителя и рабочую нагрузку пассажира или водителя; на основании рабочей нагрузки пассажира или водителя и бдительности пассажира или водителя настраивать частоту передачи сообщений пассажиру или водителю путем приоритизации множества сообщений, причем приоритизация ранжирует каждое сообщение, при этом сообщения, идентифицированные в качестве сообщений, на которые следует реагировать немедленно, ранжируются выше, чем сообщения, поставляющие информацию, для которой приемлем отсроченный ответ, для задержки или подавления сообщений с низким приоритетом, и передачи сообщений с наивысшим приоритетом, когда бдительность пассажира или водителя превышает предопределенное пороговое значение, и когда рабочая нагрузка пассажира или водителя находится выше предопределенной рабочей нагрузки.

Изобретение относится к континуальному процессору. Технический результат заключается в повышении эффективности управления аналоговыми вычислениями.

Изобретение относится к сельскому хозяйству, в частности к транспортному средству, оборудованному дронами. Дроны установлены на крыше кабины транспортного средства.

Изобретение относится к области электротехники, в частности к системам управления цифровых подстанций. Технический результат заключается в повышении гибкости архитектуры системы управления цифровой подстанцией, достигается тем, что система управления цифровой подстанцией включает датчики технических параметров оборудования подстанции, которые соединены с преобразователями информации с таких датчиков в цифровую форму, станционную шину, обеспечивающую информационный обмен между каждым из упомянутых преобразователей и подсистемой выработки команд управления оборудованием электрической подстанции.

Изобретение относится к системам и способам динамичного управления сбором данных на основе датчиков в транспортных средствах. Технический результат заключается в обеспечении динамического управления сигналами, принятыми от датчиков и их обработкой.

Изобретение относится к области вычислительной техники. Технический результат - уменьшение аппаратных затрат, увеличение быстродействия и обеспечение возможности сохранения заданного количества единиц в наборах последовательных состояний счетчика.

Система автоматизации работы летного экипажа для использования в летательном аппарате содержит базовую платформу для функционального соединения множества систем или подсистем посредством одного или более интерфейсов, человеко-машинный интерфейс, функционально соединенный с базовой платформой с обеспечением интерфейса между пилотом и системой автоматизации работы летного экипажа, систему накопления знаний, функционально соединенную с базовой платформой для определения информации, характерной для летательного аппарата, систему восприятия, функционально соединенную с базовой платформой для контроля одного или более приборов кабины летательного аппарата с выработкой данных о полетной ситуации.
Изобретение относится к способам вычислений, используемых для обучения компьютерных систем, и может быть использовано для обнаружения импульсных помех электрического сигнала.
Наверх