Способ переработки сырья и устройство для его реализации

Заявленная группа изобретений относится к химической, нефтехимической, пищевой отраслям промышленности, а именно к способу и устройству переработки высокомолекулярных соединений углерода и дисперсного минерального сырья. Способ включает подачу воздуха и газа в камеру сгорания ударно-детонационного генератора с формированием ударной детонации смеси в газодинамическом тракте генератора и созданием знакопеременной ударной волны. Затем ударную волну направляют в проточный реактор, куда подают водный поток с подлежащим переработке сырьем, вызывают в нем кавитацию, перемешивающую и дробящую сырье с расщеплением его молекул, после чего направляют полученный продукт расщепления в отстойник. Подача воздуха и газа в камеру сгорания осуществляется по каналам, выполненным в корпусе детонационного генератора, выполненного из набора стальных листов, при этом воздухо- и газоподающие каналы снабжены газодинамическими успокоительными карманами. Техническим результатом является повышение производительности, надежности, безопасности и стабилизации процесса обработки сырья. 2 н. и 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к химической, нефтехимической, пищевой отраслях промышленности, а также в процессах переработки высокомолекулярных соединений углерода и дисперсного минерального сырья.

Известен способ переработки древесной щепы в варочном котле, выполненном в виде турбулизатора, который выполнен в виде параллельных пластин, объединенных в блоки, распределенные по всему поперечному сечению котла, при этом часть пластин выполнена с возможностью возвратно-поступательного перемещения с помощью электромагнитного двигателя (RU, С2, № 2472579, 2012).

Недостатком известного решения является низкая производительность.

Наиболее близким к заявленному способу является способ обработки сырья (песка) в потоке воды посредством циклического формирования определенного объема гремучего газа в потоке, воспламенение с созданием процесса кавитации (RU, С1, № 2397015, 2010).

Недостатками известного решения являются низкая пожаровзрывобезопасность процесса, связанная с использованием объемного воспламенения (взрыва) смеси водорода и кислорода, его цикличность, обусловленная необходимостью формирования необходимого объема этой смеси, а также низкая его надежность за счет выхода из строя фильтра, препятствующего проникновению пузырьков смеси газов в насос, создающий поток воды в камере кавитации.

Заявленное изобретение направлено на повышение производительности, надежности и безопасности, также стабилизацию процесса обработки сырья.

В части «способа» указанные результаты достигаются тем, что в способе переработки сырья, предусматривающим подачу воздуха и газа в камеру сгорания ударно детонационного генератора с формированием ударной детонации смеси в газодинамическом тракте генератора и созданием знакопеременной ударной волны, направляют ударно детонационную волну в проточный реактор, куда подают водный поток с подлежащим переработке сырьем, вызывают в нем кавитацию, перемешивающую и дробящую сырье с расщеплением его молекул, после чего направляют полученный продукт расщепления в отстойник.

Подачу воздуха и газа в камеру сгорания осуществляют по каналам, выполненным в корпусе детонационного генератора, выполненного из набора стальных листов, при этом воздухо и газоподающие каналы снабжены газодинамическими успокоительными карманами.

В части «устройства» указанные результаты достигаются тем, что в устройство для переработки сырья, содержащем детонационный генератор, корпус которого собран из набора стальных листов, при этом в нем выполнены смеситель с камерой сгорания, воздухоподающие и газоподающий каналы переменного поперечного сечения, а также газодинамический тракт, который связан с реактором с проточной смесью воды с обрабатываемым сырьем.

Поскольку заявленные изобретения отличаются от известных, они соответствуют условию патентоспособности «новизна».

Заявленные решения не противоречат известным законам материального мира, что позволяет утверждать о его соответствии условию патентоспособности «промышленная применимость».

Поскольку из уровня техники не известен прием формирования устойчивой ударной детонации во внешнем канале и последующая обработка обводненного сырья, заявленные изобретения соответствуют условию «изобретательский уровень».

На фиг.1 представлен принципиальная схема установки, вид спереди; на фиг. 2 – установка с однонаправленными потоками детонационной волны и обрабатываемого обводненного сырья; на фиг. 3 – разрез ударно детонационного генератора, вид сбоку.

Заявленный способ реализуется на установке, состоящей из детонационного генератора 1, плоский корпус которого выполнен из набора стальных листов, скрепленных между собой, например, посредством заклепок, и аэродинамически связанного с ним проточного генератора 2 с успокоителем газожидкостной смеси 3.

В корпусе детонационного генератора 1 выполнена камера горения 4 со свечой зажигания (не показана), к которой подведены каналы переменного сечения подачи воздуха 5 и горючего газа 6. По всей своей длине каналы 5 и 6 снабжены глухими газодинамическими успокоительными карманами 7 и 8, наиболее узкая часть которых ориентирована в сторону подвода каналов 5 и 6 к камере горения 4.

Выходное отверстие камеры горения 4 сопряжена с газодинамическим трактом 9 переменного поперечного сечения, по всей длине которого выполнены уширенные участки 10, при этом наиболее узкие участки уширений ориентированы в сторону камеры горения 4.

Газодинамический тракт 9 связан с внутренней полостью проточного генератора 2, в которую подают водный раствор подлежащего переработке материала, в качестве которого могут быть высокомолекулярные соединения углерода, например торф, обводненные нефтепродукты или же минеральные дисперсные материалы (песок, шлам и т.д.).

В результате сгорания газа в камере 4 в газодинамическом тракте 9 формируется детонационная ударная волна, которая, попадая в проточный реактор 2 в потоке обрабатываемого сырья вызывает процесс кавитации, и гидроударов в смеси, которые приводят к дроблению и перемешиванию дисперсного сырья с расщеплением его молекул.

Обработанный продукт направляют в емкость (отстойник), где происходит дегазация смеси и далее смесь подается на очередной цикл обработки до получения необходимых свойств обрабатываемой смеси.

Излишки продуктов горения газов отводят через успокоитель 3 в отстойник для последующей дегазации и отдачи тепла обрабатываемой смеси.

Успокоительные карманы (газодинамические обратные клапана) 7 и 8 каналов 5 и 6 позволяют нейтрализовать обратную детонационную волну в случае ее отражения от корпуса проточного реактора 2 и смеси, а также позволяют охлаждать газодинамический канал и активируют газ и окислитель для эффективного сгорания в газодинамическом канале.

Во внутреннем корпусе проточного реактора 2 установлены гасящие пластины 11 с отверстиями, нейтрализующие обратную детонационную волну и активирующую кавитацию в проточном реакторе.

Детонационный генератор 1 с проточным генератором 2 и успокоителем 3 газов подвешены на пружинах12 и 13 подвешены на раме 14.

В случае совпадения направления ударной волны из газодинамического тракта 9 детонационного генератора 1 с направлением подачи водного потока с перерабатываемым сырьем в проточном реакторе снижается интенсивность отраженной детонационной волны.

В случае обработки минерального сырья, например, кварцевого песка, получают чистый материал необходимой сферической формы и размеров для оптической продукции.

При переработке различных высокомолекулярных соединений углерода могут получать обводненные удобрения или топливные смеси, производится утилизация обводненных нефтепродуктов. При обработке обводненных стоков или удобрений происходит их обеззараживание.

1. Способ переработки высокомолекулярных соединений углерода и дисперсного минерального сырья, включающий подачу воздуха и газа в камеру сгорания детонационного генератора с формированием детонации смеси в газодинамическом тракте генератора и создание знакопеременной ударной волны, направление детонационной волны в проточный реактор, в который подают водный поток с подлежащим переработке сырьем и вызывают в нем кавитацию, перемешивающую и дробящую сырье с расщеплением его молекул, а также направление полученного продукта расщепления в отстойник и отведение излишков продуктов горения газов в успокоитель газожидкостной смеси.

2. Способ переработки сырья по п. 1, отличающийся тем, что подачу воздуха и газа в камеру сгорания осуществляют по каналам, выполненным в корпусе детонационного генератора, выполненного из набора стальных листов.

3. Способ переработки дисперсного сырья по п. 1, отличающийся тем, что направления водного потока с перерабатываемым сырьем в проточном реакторе совпадает с направлением ударной волны из детонационного генератора.

4. Способ переработки сырья по п. 2, отличающийся тем, что воздухо- и газоподающие каналы снабжены глухими успокоительными карманами.

5. Устройство переработки высокомолекулярных соединений углерода и дисперсного минерального сырья для осуществления способа по п.1, содержащее детонационный генератор, корпус которого собран из набора стальных листов, при этом в нем выполнены смеситель с камерой сгорания, воздухоподающие и газоподающий каналы переменного поперечного сечения, а также газодинамический тракт, связанный с реактором с проточной смесью воды и обрабатываемого сырья, во внутреннем корпусе которого установлены гасящие пластины с отверстиями и который связан с успокоителем газожидкостной смеси.



 

Похожие патенты:

Изобретение относится к производству синтетических алмазов. Устройство включает металлическую камеру 3 с графитсодержащим источником, взрывчатое вещество 9, свечу 10, электроды 11 которой соединены проводами 12 с трансформатором высокого напряжения, и емкость с водой 2, при этом камера 3 расположена на подставке над емкостью с водой 2, свеча 10 размещена во взрывчатом веществе 9, а в качестве графитсодержащего источника использован графитовый электрод 6, расположенный в теплоизоляционном материале 5 и соединенный с источником питания через первое реле времени, трансформатор высокого напряжения 13 соединен с источником питания через второе реле времени, соединенное с источником питания через первое реле времени, камера 3 имеет крюк 4, за который зацеплен трос расположенной на другом конце емкости лебедки 17, соединенной с источником питания через третье реле времени, соединенное с источником питания через второе реле времени.

Изобретение относится к способам и устройствам для получения алкенов и алкинов, например, этилена и ацетилена из доступного газообразного исходного сырья, например, метана, этана, пропана и других предельных углеводородов.

Изобретение относится к пищевой, нефтяной промышленности, экологии и водоочистке и может использовано для получения экологически чистой питьевой воды, обеззараживания молока и фруктовых соков, упрощения трубопроводной транспортировки нефтей и нефтепродуктов.

Изобретение относится к модульной камере сжатия компрессионной системы, предназначенной для создания волн давления в текучей среде, содержащейся в камере сжатия. Модульная камера сжатия 10 содержит множество отдельных модулей 12 и множество соединительных средств 15, соединяющих между собой модули 12 для получения стенки камеры 10.

Изобретение может быть использовано в гальванике, полимерной химии, медицине, биологии, а также при изготовлении масляных и полировальных финишных композиций. Индивидуальное взрывчатое вещество, в качестве которого используют тетрил, подрывают в водной оболочке или оболочке, содержащей 5% водный раствор уротропина или Трилона Б, при массовом соотношении заряда взрывчатого вещества и оболочки, равном 1:(10-14), в среде газообразных продуктов детонации предыдущих подрывов взрывчатого вещества в качестве неокислительной среды.

Изобретение может быть использовано в гальванике, полимерной химии, медицине, биологии, а также при изготовлении масляных и полировальных финишных композиций. Готовят композиционный взрывчатый состав, содержащий следующие компоненты, мас.

Изобретение относится к устройствам для получения высоких импульсных давлений, а именно, взрывным камерам, предназначенным для локализации взрыва при проведении синтеза материалов и проведении исследовательских работ.

Изобретение относится к устройствам для реализации метода адиабатического сжатия газов и предназначено для получения нанопорошков кремния. Устройство для получения нанопорошков кремния методом адиабатического сжатия моносилана содержит цилиндрический корпус 4 с нагреваемым реакционным объемом 20, герметичной крышкой 18 и поршнем 14 реакционного объема 20 с возможностью возвратно-поступательного движения, а также каналами ввода реакционных смесей 15 и узлом подвода энергии в виде пневмоцилиндра с силовым поршнем 7, связанного штоком 28 с поршнем 14 реакционного объема 20, при этом устройство снабжено герметичным объемом 21 для сбора порошков и удаления газообразных продуктов реакции, а на силовом-разгонном пневматическом поршне 7 смонтирован внешний шток 2, позволяющий управлять скоростью и степенью сжатия реакционной смеси во время рабочего процесса.

Изобретение относится к использованию ударных волн для проведения химических реакций или для модификации кристаллической структуры веществ, в частности к способу формирования пустот в ионных кристаллах KBr.

Использование: для исследований квазиизэнтропической сжимаемости газов в мегабарной области давлений. Сущность изобретения заключается в том, что устройство содержит размещенные на основании полусферический заряд взрывчатого вещества, в полости которого осесимметрично последовательно установлены полусферические прокладка из материала с низким динамическим импедансом и первый стальной лайнер, электроконтактные датчики, размещенные на одной из границ первого лайнера, измерительный приемник с датчиками-коллиматорами, установленными симметрично относительно оси устройства по схеме гетеродин-интерферометра, снабжено вторым, установленным осесимметрично в полости первого лайнера, полусферическим стальным лайнером с отверстиями, электроконтактные датчики дополнительно установлены на наружной границе прокладки, стальное основание выполнено сплошным, на его поверхности под вторым лайнером симметрично относительно оси устройства герметично закреплено выпуклостью в основание полусферическое оптическое окно из кварцевого стекла с образованием герметичной полости, предназначенной для напуска в нее газа под высоким начальным давлением, при этом датчики измерительного приемника установлены в основании по нормали к поверхности окна вплотную к нему.

Изобретение относится к способу выполнения внутренних стенок каталитических реакторов, в частности выполнения внешнего коллектора каталитических реакторов с радиальным или радиально-осевым потоком.
Наверх