Электробаромембранный аппарат рулонного типа

Изобретение относится к конструкциям мембранных аппаратов рулонного типа. Электробаромембранный аппарат рулонного типа, состоящий из корпуса аппарата, выполненного из диэлектрического материала, перфорированной трубки, служащей для подвода исходного раствора и разделенной на две секции одинакового объема по всей длине вертикальной перегородкой, коллекторов отвода ретентата, полимерных перфорированных перегородок с перфорацией в три ряда отверстиями в шахматном порядке по всей длине, на которые последовательно уложены дренажные сетки - катод и анод, подложки мембран, прикатодные и прианодные мембраны, приклеенные к внутренней части полуцилиндров корпуса аппарата, коллекторов отвода прикатодного и прианодного пермеата, образованных пространством между полуцилиндрами корпуса аппарата, корпусом аппарата и полимерными перфорированными перегородками, расположенных под углами (π/4), и (3π/4), и (-π/4), и (-3π/4) соответственно от горизонтальной оси в месте крепления к корпусу аппарата, дренажные сетки - катод и анод являются монополярными электродами из графитовой ткани - катодом и анодом или анодом и катодом в зависимости от схемы подключения «плюс» или «минус» и соединены через отверстие полимерной перфорированной перегородки электрическим проводом, который соединен с устройством для подвода электрического тока через отверстия в полуцилиндрах корпуса аппарата, в которых расположены герметизирующие заливки, торцевые крышки являются целыми для корпуса аппарата и полуцилиндров корпуса аппарата и уплотняют посадочные поверхности через торцевые прокладки при помощи болтов и шайб, с одной стороны торцевой поверхности полуцилиндров корпуса аппарата имеются отверстия с резьбой, в которую вкручены штуцера для отвода прикатодного и прианодного пермеата, отличающийся тем, что с другой стороны торцевой поверхности полуцилиндра корпуса аппарата не имеется отверстий с резьбой, в которые вкручены штуцера для отвода ретентата, а расположены они с той же стороны, что и штуцера для отвода прикатодного и прианодного пермеата, при этом с двух противоположных сторон торцевых поверхностей корпуса аппарата расположены торцевые крышки, где размещены штуцера для вывода и ввода ретентата и исходного раствора, штуцера ввода и вывода охлаждающей воды, штуцер отвода пермеата второй ступени с отверстием на резьбе, полупроницаемых трубок, канала-собирателя пермеата второй ступени, резиновых уплотнителей системы охлаждения, полых металлических трубок. Технический результат - увеличение площади и повышение качества разделения растворов, увеличение производительности по пермеату, повышение охлаждающей способности пермеата. 5 ил.

 

Изобретение относится к конструкциям мембранных аппаратов рулонного типа и может быть использовано для осуществления процессов мембранной технологии: электроультрафильтрации, электронанофильтрации, электромикрофильтрации и электроосмофильтрации.

Аналогом данной конструкции является баромембранный аппарат рулонного типа, конструкция которого приведена в работе Дытнерского Ю.И. «Баромембранные процессы. Теория и расчет». - М.: Химия. 1986 г., с 47. Аппарат рулонного типа, предназначенный для разделения растворов под действием градиента давления, состоит из корпуса, перфорированной раствороотводящей трубки с обернутыми вокруг нее несколькими многослойными листами мембран. Недостатком аппарата является низкая эффективность разделения растворов, в особенности при разделении многокомпонентных смесей электролитов, при отделении электролитов от неэлектролитов. Эти недостатки частично устранены в прототипе.

Прототипом данной конструкции является электробаромембранный аппарат рулонного типа, конструкция которого приведена в патенте № RU 2 553 859 C1, 12.03.2014, МПК B01D 61/42. Прототип состоит из корпуса аппарата выполненного из диэлектрического материала, перфорированной трубки служащей для подвода исходного раствора и разделенной на две секции одинакового объема по всей длине вертикальной перегородкой, коллекторов отвода ретентата, полимерных перфорированных перегородок с перфорацией в три ряда отверстиями в шахматном порядке по всей длине, на которые последовательно уложены дренажные сетки - катод и анод, подложки мембран, прикатодные и прианодные мембраны, приклеенные к внутренней части полуцилиндров корпуса аппарата, коллекторов отвода прикатодного и прианодного пермеата, образованных пространством между полуцилиндрами корпуса аппарата, корпусом аппарата и полимерными перфорированными перегородками, расположенных под углами (π/4), и (3π/4), и (-π/4), и (-3π/4) соответственно от горизонтальной оси в месте крепления к корпусу аппарата, с одной стороны торцевой поверхности полуцилиндров корпуса аппарата имеются отверстия с резьбой, в которую вкручены штуцера для отвода прикатодного и прианодного пермеата, а с другой стороны торцевой поверхности полуцилиндра корпуса аппарата имеется отверстие с резьбой, в которую вкручен штуцер для отвода ретентата, дренажные сетки - катод и анод являются монополярными электродами из графитовой ткани - катодом и анодом или анодом и катодом, в зависимости от схемы подключения «плюс» или «минус», и соединены через отверстие, полимерной перфорированной перегородки электрическим проводом, который соединен с устройством для подвода электрического тока через отверстия в полуцилиндрах корпуса аппарата, в которых расположены герметизирующие заливки, торцевые крышки являются целыми для корпуса аппарата и полуцилиндров корпуса аппарата и уплотняют посадочные поверхности через торцевые прокладки при помощи болтов и шайб.

Недостатком аппарата является малая площадь разделения растворов в единице объема аппарата, малая охлаждающая способность пермеата, мала производительность по пермеату, низкое качество разделения растворов, в особенности при выделении ценных веществ из многокомпонентных растворов и сточных вод.

Технический результат выражается увеличением площади и повышением качества разделения растворов, увеличении производительности по пермеату, повышении охлаждающей способности пермеата, за счет изменения конструкции аппарата: корпуса аппарата выполненного из диэлектрического материала, перфорированной трубки служащей для подвода исходного раствора и разделенной на две секции одинакового объема по всей длине вертикальной перегородкой, коллекторов отвода ретентата, полимерных перфорированных перегородок с перфорацией в три ряда отверстиями в шахматном порядке по всей длине, на которые последовательно уложены дренажные сетки - катод и анод, подложки мембран, прикатодные и прианодные мембраны, приклеенные к внутренней части полуцилиндров корпуса аппарата, коллекторов отвода прикатодного и прианодного пермеата, образованных пространством между полуцилиндрами корпуса аппарата, корпусом аппарата и полимерными перфорированными перегородками, расположенных под углами (π/4), и (3π/4), и (-π/4), и (-3π/4) соответственно от горизонтальной оси в месте крепления к корпусу аппарата, дренажные сетки - катод и анод являются монополярными электродами из графитовой ткани - катодом и анодом или анодом и катодом, в зависимости от схемы подключения «плюс» или «минус», и соединены через отверстие полимерной перфорированной перегородки электрическим проводом, который соединен с устройством для подвода электрического тока через отверстия в полуцилиндрах корпуса аппарата, в которых расположены герметизирующие заливки, торцевые крышки являются целыми для корпуса аппарата и полуцилиндров корпуса аппарата и уплотняют посадочные поверхности через торцевые прокладки при помощи болтов и шайб, с одной стороны торцевой поверхности полуцилиндров корпуса аппарата имеются отверстия с резьбой, в которую вкручены штуцера для отвода прикатодного и прианодного пермеата, отличающийся тем что, с другой стороны торцевой поверхности полуцилиндра корпуса аппарата не имеется отверстий с резьбой, в которые вкручены штуцера для отвода ретентата, а расположены они с той же стороны, что и штуцера для отвода прикатодного и прианодного пермеата 18 и 17, при этом с двух противоположных сторон торцевых поверхностей корпуса аппарата 1 расположены торцевые крышки 29 и 35, где размещены штуцера для вывода и ввода ретентата и исходного раствора 12, 3, штуцера ввода и вывода охлаждающей воды 41, 43, штуцер отвода пермеата второй ступени 49 с отверстием 48 на резьбе, полупроницаемых трубок 50, канала-собирателя пермеата второй ступени 51, резиновых уплотнителей системы охлаждения 52, полых металлических трубок 40.

На фиг. 1 показан в разрезе электробаромембранный аппарат рулонного типа; фиг. 2 - вид слева; фиг. 3 - вид справа; фиг. 4 - сечение А-А на фиг. 1; фиг. 5 - вид Б увеличенный на фиг. 4.

Электробаромембранный аппарат рулонного типа состоит из перфорированной трубки 2, служащей для подвода исходного раствора разделенной на две секции одинакового объема по всей длине вертикальной перегородкой 21, коллекторы отвода ретентата 10, образованы пространством между полимерными перфорированными перегородками 15 с перфорацией в три ряда отверстиями 19 в шахматном порядке по всей длине, на которые последовательно уложены с одной стороны дренажные сетки - катод 7 и анод 5, подложки мембран 4, прикатодные и прианодные мембраны 26 и 6, приклеенные к внутренней части полуцилиндра корпуса аппарата 20, расположенными под углом π/4, 3π/4 и (-π/4), (-3π/4) от горизонтальной оси в месте крепления прикатодных и прианодных мембран 26 и 6 и подложек мембран 4 с другой стороны дренажных сеток - катод 7 и анод 5 к корпусу аппарата 1, коллектора отвода прикатодного пермеата 24, образованного пространством между полуцилиндром корпуса аппарата 20, корпусом аппарата 1 и полимерной перфорированной перегородкой 15 с перфорацией в три ряда отверстиями 19 в шахматном порядке по всей длине, расположенной под углом π/4 и (-3π/4) от горизонтальной оси в месте крепления прикатодных мембран 26 и подложек мембран 4 к корпусу аппарата 1, коллектора отвода прианодного пермеата 25 образованного пространством между полуцилиндром корпуса аппарата 20, корпусом аппарата 1 и полимерной перфорированной перегородкой 15 с перфорацией в три ряда отверстиями 19 в шахматном порядке по всей длине, расположенной под углом 3π/4 и (-π/4) от горизонтальной оси в месте крепления прианодных мембран 6 и подложек мембран 4 к корпусу аппарата 1, с одной стороны торцевой поверхности полуцилиндра корпуса аппарата 20 на торцевой крышке 29 имеются отверстия с резьбой, в которую вкручены штуцера для отвода прикатодного и прианодного пермеата 18 и 17, а с другой стороны торцевой поверхности полуцилиндра корпуса аппарата 20 на торцевой крышке 35 имеется отверстие с резьбой 27, в которую вкручен штуцер для отвода ретентата 13, торцевые крышки 29 и 35 являются целыми для корпуса аппарата 1 и полуцилиндров корпуса аппарата 20 и уплотняют посадочные поверхности через торцевые прокладки 32 и 33, при помощи болтов 30 и шайб 31, а пространство, образованное между корпусом аппарата 1, прикатодными и прианодными мембранами 26 и 6 и перфорированной трубкой 2, служащей для подвода исходного раствора и разделенной на две секции одинакового объема по всей длине вертикальной перегородкой 21, создают коллектор для протекания исходного раствора 28, в котором расположены сетки-турбулизаторы 8, в которые вплетены металлические трубки 40, переплетенные каждая между собой по всей длине и ширине, а дуга плетения сетки-турбулизатора 8, соединяющая межузлия переплетения перекинута через одну пару металлических трубок 40 так, что сами металлические трубки 40 не касаются поверхностей прикатодных, прианодных мембран 26 и 6, при этом на торцевых поверхностях корпуса аппарата 1 с одной и другой стороны расположены торцевые крышки 29 и 35, в которых имеются отверстия с резьбой 22, 23 и 42, 44, в которую вкручены штуцера для вывода и ввода ретентата и исходного раствора 12, 3 соответственно и штуцера ввода и вывода охлаждающей воды 41, 43 соответственно, которые расположены под углом π/2, (-π/2) и (-π/2), π/2 от горизонтальной оси и находятся на расстоянии 0,12 м и 0,06 м соответственно от края корпуса аппарата 1, а межмембранный канал 34, в котором расположена сетка-турбулизатор 9, образован последовательно уложенными с двух сторон от сетки-турбулизатора 9, прикатодной, прианодной мембран 26 и 6, подложек мембран 4, дренажных сеток - катода 7 и анода 5 и подложек мембран 4, прикатодной, прианодной мембран 26 и 6, которые все вместе проклеены с торцевых поверхностей и с сетками-турбулизаторами 8, в которые вплетены металлические трубки 40 обернуты вокруг перфорированной трубки 2 служащей для подвода исходного раствора и разделенной на две секции одинакового объема по всей длине вертикальной перегородкой 21, при этом дренажные сетки – катод 7 и анод 5 расположены между подложками мембран 4 и уложенными на них прикатодными и прианодными мембранами 26 и 6, соответственно, приклеенными в месте перфорации к перфорированной трубке 2, служащей для подвода исходного раствора и разделенной на две секции одинакового объема по всей длине вертикальной перегородкой 21, дренажные каналы прикатодного и прианодного пермеата соответственно образованы пространством между подложками мембран 4, в которых находится дренажная сетка - катод 7 и анод 5, являющаяся монополярными электродами из графитовой ткани - катодом и анодом или анодом и катодом, в зависимости от схемы подключения «плюс» или «минус», и соединены через отверстия 19, полимерной перфорированной перегородки 15 с перфорацией в три ряда отверстиями 19 в шахматном порядке по всей длине, электрическим проводом 11, проходящим через коллекторы отвода прикатодного и прианодного пермеата 24 и 25, который соединен с устройством для подвода электрического тока 14 через отверстия в полуцилиндрах корпуса аппарата 20, в которых расположена герметизирующая заливка 16, противоположные концы металлических трубок 40 закреплены жестко кольцевыми уплотнителями 39 в фиксаторах цилиндрической формы 37 по спирали при расстоянии между соседними металлическими трубками 40 в 0,01 м, в фиксаторах цилиндрической формы 37 имеется отверстие, совпадающее с посадочной поверхностью перфорированной трубки 2, служащей для подвода исходного раствора разделенной на две секции одинакового объема по всей длине вертикальной перегородкой 21, а в местах выступов уплотнительной поверхности фиксаторов цилиндрической формы 37 расположены прокладки 38 и 36 в местах стыковки с корпусом аппарата 1, торцевыми крышками 29 и 35 и перфорированной трубкой 2, служащей для подвода исходного раствора разделенной на две секции одинакового объема по всей длине вертикальной перегородкой 21, место расположения фиксаторов цилиндрической формы 37 на данной перфорированной трубке 2 служащей для подвода исходного раствора разделенной на две секции одинакового объема по всей длине вертикальной перегородкой 21 с одной стороны по длине ее составляет 0,15 м, а с другой стороны 0,05 м, а между фиксаторами цилиндрической формы 37 и торцевыми крышками 29 и 35 соответственно, имеются канал-распределитель 45 и канал-собиратель 46 охлаждающей воды, с резиновыми уплотнителями 47, на фиксаторах цилиндрической формы 37 имеется резьба, в которую вкручены также штуцера вывода и ввода ретентата и исходного раствора 12 и 3 соответственно, штуцера отвода пермеата второй ступени 49 с отверстием 48 на резьбе, полупроницаемых трубок 50, канала-собирателя пермеата второй ступени 51, резиновых уплотнителей системы охлаждения 52, полых металлических трубок 40.

Корпус аппарата 1, перфорированная трубка 2, полуцилиндры корпуса аппарата 20, полимерные перфорированные перегородки 15, вертикальная перегородка 21, штуцера для отвода прикатодного и прианодного пермеата 18 и 17, штуцера для вывода и ввода ретентата и исходного раствора 12, 3, штуцера для отвода ретентата 13, штуцера ввода и вывода охлаждающей воды 41, 43 , торцевые крышки 29, 35, штуцер отвода пермеата второй ступени 49 могут быть изготовлены из капролона.

Подложка мембран 4 изготовлена из листа ватмана.

Дренажные сетки - катод 7 и анод 5 являются монополярными электродами катодом и анодом или анодом и катодом, в зависимости от схемы подключения «плюс» или «минус» и могут быть выполнены из графитовой ткани типа «Вискум».

Прикатодная и прианодная мембраны 26 и 6 могут быть изготовлены в виде ленты из мембран типа МГА-95, МГА-70П, МГА-80П, МГА-90П, МГА-95П-Н, МГА-95П-Т, МГА-100П, ОПМ-К, ESPA, УАМ-150П, УАМ-300П, УАМ-500П, УАМ-1000П, УПМ-200, УПМ-П, УПМ-ПП, УФМ-100, УФМ-П, УФМ-ПТ, ОПМН-К, ОПМН (ОФМН) - П, МФФК-0,МФФК-3.

Сетки-турбулизаторы 8 и 9 могут быть изготовлены из пластмассы или углепластика обеспечивают необходимую скорость движения и турбулизацию раствора.

Фиксаторы цилиндрической формы 37 могут быть изготовлены из материалов Х18Н9Т, Х18Н10Т.

Полые металлические трубки 40 могут быть изготовлены из материалов Х18Н9Т, Х18Н10Т.

Полупроницаемые трубки 50 могут быть изготовлены из фторопласта с 50-80% пористостью.

Кольцевые уплотнители 39 могут быть изготовлены из резины, пластмассы.

Герметизирующая заливка 16 может быть изготовлена из диэлектрических герметизирующих эпоксидных смол или клея холодная сварка.

В качестве охлаждающей воды может использоваться водопроводная вода с температурой от 5 до 15°С.

Аппарат работает следующим образом.

Исходный раствор под давлением превышающем осмотическое давление растворенных в нем веществ одновременно подается в перфорированную трубку 2, фиг. 1, 2 разделенную на две секции одинакового объема по всей длине вертикальной перегородкой 21 и штуцер для ввода исходного раствора 3, фиг. 3 образующие два контура разделения растворов.

Для первого контура разделения, исходный раствор через перфорированную трубку 2 разделенную на две секции одинакового объема по всей длине вертикальной перегородкой 21, фиг.1, 4, попадает в межмембранный канал 34, в котором расположена сетка-турбулизатор 9, образованный последовательно уложенными с двух сторон от сетки-турбулизатора 9, прикатодными, прианодными мембранами 26, 6, подложками мембран 4, дренажными сетками - катодом 7 и анодом 5 и подложками мембран 4, прикатодными, прианодными мембранами 26, 6, которые все вместе проклеены с торцевых поверхностей.

Для второго контура разделения, исходный раствор через штуцер для ввода исходного раствора 3, попадает в пространство, образованное между корпусом аппарата 1, фиг. 1, 4, прикатодными и прианодными мембранами 26 и 6 и перфорированной трубкой 2, служащей для подвода исходного раствора и разделенной на две секции одинакового объема по всей длине вертикальной перегородкой 21, создающее коллектор для протекания исходного раствора 28, в котором расположены сетки-турбулизаторы 8, в которые вплетены полупроницаемые трубки 50, содержащие охлаждающие металлические трубки 40, переплетенные каждая между собой по всей длине и ширине, а дуга плетения сетки-турбулизатора 8, соединяющая межузлия переплетения перекинута через одну пару полупроницаемых трубок 50 так, что сами полупроницаемые трубки 50 не касаются поверхностей прикатодных, прианодных мембран 26 и 6. Верхний и нижний торцы металлических трубок 40 изолирован диэлектрическими уплотнителями 52, которые также предотвращают смешение охлаждающей жидкости и пермеата. Пермеат из полупроницаемых трубок 50 накапливается в канал-собиратель пермеата 51 и отводится через штуцер 49 размещенный на отверстии 48 с резьбой.

В этот же момент времени к дренажным сеткам - катоду 7 и аноду 5, фиг. 4, включением устройства для подвода электрического тока 14 через электрические провода 11, которые проходят через отверстие 19 полимерной перфорированной перегородки 15 с перфорацией в три ряда отверстиями 19 в шахматном порядке по всей длине и через коллекторы отвода прикатодного и прианодного пермеата 24, 25 и отверстия в полуцилиндрах корпуса аппарата 20, в которых расположены герметизирующие заливки 16, к аппарату подводится внешнее постоянное электрическое поле с заданной плотностью тока.

Раствор в первом контуре разделения, двигаясь турбулизируется с помощью сетки-турбулизатора 9 фиг. 1, 4 и поступает к прикатодным и прианодным мембранам 26 и 6, в зависимости от схемы подключения «плюс» или «минус» дренажной сетки - катода 7 и анода 5. Раствор во втором контуре разделения, двигаясь турбулизируется при помощи сетки-турбулизаторы 8 фиг. 1, 4, 5 в которые вплетены металлические трубки 40, переплетенные каждая между собой по всей длине и ширине, а дуга плетения сетки-турбулизатора 8, соединяющая межузлия переплетения перекинута через одну пару металлических трубок 40 так, что сами металлические трубки 40 не касаются поверхностей прикатодных, прианодных мембран 26, 6 и поступает к прикатодным и прианодным мембранам 26 и 6 в зависимости от схемы подключения «плюс» или «минус» дренажной сетки - катода 7 и анода 5.

В межмембранном канале 34, фиг. 5, катионы и анионы, проникающие через прикатодные и прианодные мембраны 26 и 6, подложки мембран 4, попадают с одной стороны в дренажные каналы прикатодного и прианодного пермеата соответственно, образованные пространством между подложками мембран 4, в которых находится дренажная сетка - катод 7 и анод 5, являющиеся монополярными электродами из графитовой ткани - катодом и анодом или анодом и катодом, в зависимости от схемы подключения «плюс» или «минус». А из коллектора для протекания исходного раствора 28, фиг. 5, катионы и анионы, проникающие через прикатодные и прианодные мембраны 26 и 6, подложки мембран 4, попадают с другой стороны в эти же дренажные каналы прикатодного и прианодного пермеата соответственно. Далее прикатодный и прианодный пермеат, фиг. 4 попадает самотеком в коллекторы отвода прикатодного пермеата 24 и прианодного пермеата 25, образованные пространством между полуцилиндром корпуса аппарата 20, корпусом аппарата 1 и полимерной перфорированной перегородкой 15 с перфорацией в три ряда отверстиями 19 в шахматном порядке по всей длине, расположенной под углом π/4 и (-3π/4) и 3π/4 и (-π/4) соответственно, от горизонтальной оси в месте крепления прикатодных, прианодных мембран 26, 6 и подложек мембран 4 к корпусу аппарата 1, затем прикатодный и прианодный пермеат и выделившиеся в результате электрохимических реакций газы, фиг. 1, отводятся через отверстия с резьбой в торцевой крышке 29, в которую вкручены штуцера для отвода прикатодного и прианодного пермеата 18 и 17 в виде оснований и кислот.

Одновременно с подачей исходного раствора, фиг. 1, через отверстие с резьбой 42 и штуцер ввода охлаждающей воды 41 расположенным на торцевой крышке 29 подается охлаждающая вода в канал-распределитель 45 охлаждающей воды, где рассредоточивается по всем полым металлическим трубкам 40 и протекает в канал-собиратель 46 охлаждающей воды, загерметизированный резиновыми уплотнителями 47, а затем через отверстие с резьбой 44 и штуцер вывода охлаждающей воды 43 расположенным на торцевой крышке 35 отводится из аппарата.

Исходный раствор, протекая по межмембранному каналу 34, фиг.1, 4, очищается от катионов и анионов и попадает в коллекторы отвода ретентата 10, образованные пространством между полимерными перфорированными перегородками 15 с перфорацией в три ряда отверстиями 19 в шахматном порядке по всей длине, на которые последовательно уложены с одной стороны дренажные сетки - катод 7 и анод 5, подложки мембран 4, прикатодные и прианодные мембраны 26 и 6, приклеенные к внутренней части полуцилиндра корпуса аппарата 20, расположенными под углом π/4, 3π/4 и (-π/4), (-3π/4) от горизонтальной оси в месте крепления прикатодных и прианодных мембран 26 и 6 и подложек мембран 4 с другой стороны дренажных сеток – катода 7 и анода 5 к корпусу аппарата 1 и выводится через отверстие с резьбой 27 на торцевой крышке 35, в которую вкручен штуцер для отвода ретентата 13. А исходный раствор, подаваемый через отверстия с резьбой 23 в торцевой крышке 35 и фиксаторе цилиндрической формы 37 в которую вкручен штуцер для ввода исходного раствора 3, очищается от катионов и анионов в коллекторе для протекания исходного раствора 28, фиг 1, 4 и выводится через отверстия с резьбой 22 в фиксаторе цилиндрической формы 37 и торцевой крышке 29, в которую вкручен штуцер для вывода ретентата 12.

Исходный раствор, протекая по всему межмембранному каналу 34 и коллектору для протекания исходного раствора 28, фиг. 1, 4, последовательно очищается от катионов и анионов.

Под увеличением площади и повышением качества разделения растворов, увеличении производительности по пермеату, повышении охлаждающей способности пермеата понимается возможность при данном конструктивном исполнении электробаромембранного аппарата рулонного типа фиг. 1-5, совместить процесс электробаромембранного разделение с процессом более интенсивного разделения и охлаждения пермеата.

Подтверждение этих технических результатов фиг. 1-5 возможно из-за того, что с одной из сторон торцевых поверхностей полуцилиндра корпуса аппарата не имеется отверстий с резьбой, в которые вкручены штуцера для отвода ретентата, а расположены они с той же стороны, что и штуцера для отвода прикатодного и прианодного пермеата 18 и 17, при этом с двух противоположных сторон торцевых поверхностей корпуса аппарата 1 расположены торцевые крышки 29 и 35, где размещены штуцера для вывода и ввода ретентата и исходного раствора 12, 3, штуцера ввода и вывода охлаждающей воды 41, 43, штуцер отвода пермеата второй ступени 49 с отверстием 48 на резьбе. Полупроницаемые трубки 50, канал-собиратель пермеата второй ступени 51, резиновые уплотнители системы охлаждения 52, полые металлические трубки 40, позволяют проводить разделение раствора по второму контуру, это увеличивает площадь и повышает качество разделения растворов, увеличивает производительность и охлаждающую способность по пермеату.

Необходимость охлаждения пермеата, фиг. 1, 4, заключается в том, что исходный раствор нагревается, в результате наложения внешнего электрического поля.

На разработанной конструкции электробаромембранного аппарата рулонного типа без наложения электрического поля можно проводить баромембранные процессы, например ультрафильтрацию, нанофильтрацию, микрофильтрацию и обратный осмос.

Электробаромембранный аппарат рулонного типа, состоящий из корпуса аппарата, выполненного из диэлектрического материала, перфорированной трубки служащей для подвода исходного раствора и разделенной на две секции одинакового объема по всей длине вертикальной перегородкой, коллекторов отвода ретентата, полимерных перфорированных перегородок с перфорацией в три ряда отверстиями в шахматном порядке по всей длине, на которые последовательно уложены дренажные сетки - катод и анод, подложки мембран, прикатодные и прианодные мембраны, приклеенные к внутренней части полуцилиндров корпуса аппарата, коллекторов отвода прикатодного и прианодного пермеата, образованных пространством между полуцилиндрами корпуса аппарата, корпусом аппарата и полимерными перфорированными перегородками, расположенных под углами (π/4), и (3π/4), и (-π/4), и (-3π/4) соответственно от горизонтальной оси в месте крепления к корпусу аппарата, дренажные сетки - катод и анод являются монополярными электродами из графитовой ткани - катодом и анодом или анодом и катодом, в зависимости от схемы подключения «плюс» или «минус», и соединены через отверстие полимерной перфорированной перегородки электрическим проводом, который соединен с устройством для подвода электрического тока через отверстия в полуцилиндрах корпуса аппарата, в которых расположены герметизирующие заливки, торцевые крышки являются целыми для корпуса аппарата и полуцилиндров корпуса аппарата и уплотняют посадочные поверхности через торцевые прокладки при помощи болтов и шайб, с одной стороны торцевой поверхности полуцилиндров корпуса аппарата имеются отверстия с резьбой, в которую вкручены штуцера для отвода прикатодного и прианодного пермеата, отличающийся тем, что с другой стороны торцевой поверхности полуцилиндра корпуса аппарата не имеется отверстий с резьбой, в которые вкручены штуцера для отвода ретентата, а расположены они с той же стороны, что и штуцера для отвода прикатодного и прианодного пермеата, при этом с двух противоположных сторон торцевых поверхностей корпуса аппарата расположены торцевые крышки, где размещены штуцера для вывода и ввода ретентата и исходного раствора, штуцера ввода и вывода охлаждающей воды, штуцер отвода пермеата второй ступени с отверстием на резьбе, полупроницаемых трубок, канала-собирателя пермеата второй ступени, резиновых уплотнителей системы охлаждения, полых металлических трубок.



 

Похожие патенты:

Изобретение относится к картриджам и модулям нового типа для разделения смесей текучих сред, прежде всего для разделения газов, к способу их изготовления, а также к способу их применения. Картридж для разделения смеси текучих сред, предпочтительно смеси газов, содержит мембранный элемент, который имеет волокнистые или плоские мембраны с передним концом КМ1 и задним концом КМ2 на противоположной стороне, передний закрывающий элемент ЗЭ1 на КМ1, задний закрывающий элемент ЗЭ2 на КМ2, непроницаемый для разделяемой смеси текучих сред барьер, который расположен вокруг мембран на участке между ЗЭ1 и ЗЭ2, и уплотнительный элемент, уплотнительный элемент является самостоятельным, независимым элементом картриджа, герметично соединяющим картридж после его установки в корпус модуля с внутренней поверхностью этого корпуса модуля, и состоит из по меньшей мере двух частей, из которых одна часть представляет собой уплотнение, предпочтительно уплотнительное кольцо или скребковую манжету, которое после установки картриджа в корпус модуля для разделения текучих сред плотно примыкает к внутренней стенке этого его корпуса, а другая часть представляет собой несущий элемент, который несет уплотнение и который съемно прикреплен к переднему или заднему закрывающему элементу ЗЭ1 или ЗЭ2 мембранного элемента.

Изобретение относится к области опреснения и обессоливания природных и сточных вод методом обратного осмоса. Мембранный рулонный элемент, содержащий листы сложенной вдвое мембраны, турбулизатор-разделитель, образованный путем наклеивания на поверхность мембраны шариков из упругого материала, обеспечивающих заданную равномерную высоту мембранного канала при скручивании пакетов, и листы дренажа, которые спирально намотаны на перфорированную трубку.

Изобретение относится к мембранному элементу рулонного типа для разделения компонентов, растворенных в жидкости. Разделитель канала неочищенной воды имеет двухслойную структуру, помещенную между первой разделительной мембраной и второй разделительной мембраной, которые намотаны вокруг водосборной трубы мембранного элемента рулонного типа, и состоящую из первого нитевого ряда и второго нитевого ряда, наклоненных в противоположных направлениях друг от друга относительно направления, параллельного водосборной трубе, причем разделитель канала неочищенной воды содержит поочередно: первую сетчатую структуру, выполненную с возможностью продолжения в направлении протяжения второго нитевого ряда из первого нитевого ряда и второго нитевого ряда; и вторую сетчатую структуру, выполненную с возможностью продолжения в направлении протяжения второго нитевого ряда из первого нитевого ряда и второго нитевого ряда, причем интервал второго нитевого ряда меньше, чем интервал второго нитевого ряда, образующего первую сетчатую структуру.

Изобретение относится к конструкциям мембранных аппаратов рулонного типа. Предлагается электробаромембранный аппарат рулонного типа, состоящий из корпуса, выполненного из диэлектрического материала, штуцеров для ввода и вывода охлаждающей воды, перфорированной трубки, пленок, имеющих насечки, углубленные в половину от ее толщины, сеток-турбулизаторов, подложек мембран, прикатодных и прианодных мембран, дренажных сеток, являющихся катодом и анодом, устройства для подвода электрического тока, электрических проводов, полимерных перфорированных перегородок с перфорацией в три ряда отверстиями в шахматном порядке по всей длине, штуцеров для отвода прикатодного и прианодного пермеата, штуцеров для отвода ретентата, вертикальной перегородки, коллекторов отвода прианодного и прикатодного пермеата, герметизирующей заливки, сеток-турбулизаторов охлаждающей воды, рулонного элемента, резиновой манжеты, уплотнительной прокладки, герметизирующей прокладки, штуцера подачи исходного раствора, посадочных прокладок, ответного прижимного фланца, торцевых прокладок, антителескопической решетки, втулки, внешних трубок, перегородок, внутренних трубок, клеевой композиции, эллиптических щелей, эллиптических проточек, отверстий, торцевых прокладок, крышки, фиксирующих прокладок, отверстий в фиксирующих прокладках, колец резиновых, внешних отводных трубок, при этом перфорированная трубка изготовлена с перфорацией в виде эллиптических проточек, по периметру которых расположены полуэллипсы, выполненные на расстоянии 5 мм друг от друга, а на внутренней поверхности имеется восемь полуокружностей-проточек, проходящих по всей длине образующих и распределенных от горизонтальной оси под углами π/6, π/3, 2π/3, 5π/6, 7π/6, 4π/3, 5π/3, 11π/6 соответственно, отверстия в фиксирующей прокладке исполнены в виде двух полумесяцев с закругленными краями, на внутренней поверхности внутренней трубки имеется восемь полуокружностей-проточек, проходящих по всей длине образующих и распределенных от горизонтальной оси под углами π/6, π/3, 2π/3, 5π/6, 7π/6, 4π/3, 5π/3, 11π/6 соответственно, внешняя и внутренняя трубки перфорированы эллиптическими щелями, по периметру которых расположены полуэллипсы, выполненные на расстоянии 5 мм и 10 мм друг от друга соответственно, в полимерной перфорированной перегородке имеются эллиптические отверстия, пленки, имеющие насечки, углубленные в половину от ее толщины, составляют по форме параллелограммы, штуцер для ввода охлаждающей воды смещен к разъемной торцевой поверхности корпуса аппарата на 25 мм, штуцер для вывода охлаждающей воды смещен к глухой торцевой поверхности корпуса аппарата на 25 мм.

Изобретение относится к мембранному модулю для диффузионного диализа или доннановского диализа и соответствующему способу диффузионного диализа. Мембранный модуль для диффузионного диализа жидкостей, содержащий два проточных канала, образованные посредством намотки первого отрезка мембранной пленки и второго отрезка мембранной пленки на центральное тело, причем моток первого отрезка удерживается посредством дистанцирующего элемента на расстоянии от мотка второго отрезка, вследствие чего в результате намотки образованы два отделенных друг от друга проточных канала, каждый из которых ограничен мембранной пленкой, причем мембранный модуль содержит два отрезка мембранной пленки и две поворотные пленки, которые первым отрезком и вторым отрезком поочередно размещены на центральном теле и намотаны вокруг него, вследствие чего образованы четыре проточных канала, причем каждые два проточных канала соединены на конце мотка, вследствие чего два проточных канала образуют область втекания, а два других проточных канала образуют область вытекания на центральном теле, причем предусмотрена возможность размещения на центральном теле соответствующих подводящих труб и отводящих труб, а также предусмотрена возможность поворота протекающей через мембранный модуль соответствующей жидкости на конце мотка.

Изобретение относится к технологии очистки или отделения целевых биоматериалов из жидких смесей. Описан упорядоченный фильтрующий материал для очистки и/или выделения биоматериалов из жидкости, содержащий: (i) первый фильтрующий слой, содержащий анионообменный нетканый субстрат, причем анионообменный нетканый субстрат содержит множество четвертичных аммониевых групп; и (ii) второй фильтрующий слой, содержащий функционализированную микропористую мембрану, причем функционализированная микропористая мембрана содержит множество гуанидильных групп.

Изобретение относится к экономически эффективному газоразделительному мембранному модулю. Газоразделительный мембранный модуль, используемый при работе с кислым газом, содержащий: полую емкость высокого давления, открытую на первом и втором торцах, выполненную из углеродистой стали либо низколегированной стали, при этом емкость высокого давления имеет первую торцевую поверхность на указанном первом торце и вторую торцевую поверхность на указанном втором торце; первую торцевую крышку, выполненную из углеродистой стали либо низколегированной стали, уплотняющую указанный первый торец указанной емкости высокого давления на указанной первой торцевой поверхности, при этом указанная первая торцевая крышка содержит образованный в ней первый канал; вторую торцевую крышку, выполненную из углеродистой стали либо низколегированной стали, уплотняющую указанный второй торец указанной емкости высокого давления на указанной второй торцевой поверхности, при этом указанная вторая торцевая крышка содержит второй образованный в ней канал, при этом указанная емкость высокого давления имеет третий образованный в ней канал; множество газоразделительных мембран, расположенных в емкости высокого давления в виде пучка, при этом множество мембран заключены в трубную решетку из твердого полимера по меньшей мере на одном торце пучка уплотненным образом, при этом каждая из указанных мембран имеет первую сторону и вторую сторону, при этом каждая из указанных мембран предназначена и выполнена для разделения сырьевого газа, содержащего кислый газ, подаваемого к ее первой стороне, посредством проникновения газов через мембрану к ее второй стороне так, чтобы обеспечить газ-пермеат с низким давлением на второй стороне и остаточный газ с высоким давлением на первой стороне, при этом газ-пермеат обогащен одним либо несколькими газами по сравнению с остаточным газом; трубу первого канала, выполненную из высоколегированной стали, сообщающуюся по текучей среде с первым каналом и одной из первых сторон мембран и вторых сторон мембран; трубу второго канала, выполненную из высоколегированной стали, сообщающуюся по текучей среде со вторым каналом и другой из первых сторон мембран и вторых сторон мембран; и по меньшей мере два сжимаемых уплотнительных элемента, содержащих первый и второй сжимаемые уплотнительные элементы, при этом: указанный первый сжимаемый уплотнительный элемент сжат между внешней поверхностью трубы первого канала и внутренней поверхностью первого канала, при этом по меньшей мере одна из указанной внешней поверхности трубы первого канала и указанной внутренней поверхности первого канала снабжена коррозионно-стойкой обшивкой; указанный второй сжимаемый уплотнительный элемент сжат между внешней поверхностью трубы второго канала и внутренней поверхностью второго канала, при этом по меньшей мере одна из указанной внешней поверхности трубы второго канала и указанной внутренней поверхности второго канала снабжена коррозионно-стойкой обшивкой.

Изобретение относится к газоразделительному мембранному модулю. Газоразделительный мембранный модуль, используемый при работе с кислым газом, содержащий: полую емкость высокого давления, открытую на первом и втором торцах, выполненную из углеродистой стали либо низколегированной стали, при этом емкость высокого давления имеет первую торцевую поверхность на указанном первом торце и вторую торцевую поверхность на указанном втором торце; первую торцевую крышку, выполненную из углеродистой стали либо низколегированной стали, уплотняющую указанный первый торец указанной емкости высокого давления на указанной первой торцевой поверхности, при этом указанная первая торцевая крышка содержит образованный в ней канал для сырьевого газа; вторую торцевую крышку, выполненную из углеродистой стали либо низколегированной стали, уплотняющую указанный второй торец указанной емкости высокого давления на указанной второй торцевой поверхности, при этом указанная вторая торцевая крышка содержит образованный в ней канал для остатка, при этом указанная емкость высокого давления имеет образованный в ней канал для пермеата; множество газоразделительных мембран, расположенных в емкости высокого давления в виде пучка, при этом множество мембран заключены в твердый полимер на торце пучка уплотненным образом с образованием первой и второй трубной решетки, при этом каждая из указанных мембран имеет первую сторону и вторую сторону, при этом каждая из указанных мембран предназначена и выполнена для разделения сырьевого газа, содержащего кислый газ, подаваемого к ее первой стороне, посредством проникновения газов через мембрану к ее второй стороне так, чтобы обеспечить газ-пермеат с низким давлением на второй стороне и остаточный газ с высоким давлением на первой стороне, при этом газ-пермеат обогащен одним либо несколькими газами по сравнению с остаточным газом; трубу канала для сырьевого газа, выполненную из высоколегированной стали, сообщающуюся по текучей среде с каналом для сырьевого газа и одной из первых сторон мембран и вторых сторон мембран; трубу канала для остатка, выполненную из высоколегированной стали, сообщающуюся по текучей среде с каналом для остатка и другой из первых сторон мембран и вторых сторон мембран; и по меньшей мере два сжимаемых уплотнительных элемента, содержащих первый и второй сжимаемые уплотнительные элементы, при этом: указанный первый сжимаемый уплотнительный элемент зажат между внутренней поверхностью емкости высокого давления смежно с первой трубной решеткой и внешней поверхностью первой трубной решетки, при этом указанная внутренняя поверхность емкости высокого давления снабжена коррозионно-стойкой обшивкой; указанный второй сжимаемый уплотнительный элемент зажат между внутренней поверхностью емкости высокого давления смежно со второй трубной решеткой и внешней поверхностью второй трубной решетки, при этом внутренняя поверхность емкости высокого давления снабжена коррозионно-стойкой обшивкой.

Изобретение относится к конструкциям мембранных аппаратов рулонного типа и может быть использовано для осуществления процессов мембранной технологии: электроультрафильтрации, электронанофильтрации, электромикрофильтрации и электрогиперфильтрации. Электробаромембранный аппарат рулонного типа, состоящий из корпуса, выполненного из диэлектрического материала, штуцеров для ввода и вывода охлаждающей воды, перфорированной трубки, пленок, имеющих насечки, углубленные в половину от ее толщины, сеток-турбулизаторов, подложек мембран, прикатодных и прианодных мембран, дренажных сеток, являющихся катодом и анодом, устройства для подвода электрического тока, электрических проводов, полимерных перфорированных перегородок с перфорацией в три ряда отверстиями в шахматном порядке по всей длине, штуцеров для отвода прикатодного и прианодного пермеата, штуцеров для отвода ретентата, вертикальной перегородки, коллекторов отвода прианодного и прикатодного пермеата, герметизирующей заливки, сеток-турбулизаторов охлаждающей воды, рулонного элемента, резиновой манжеты, уплотнительной прокладки, герметизирующей прокладки, штуцера подачи исходного раствора, посадочных прокладок, ответного прижимного фланца, торцевых прокладок, антителескопической решетки, втулки, внешних трубок, перегородок, внутренних трубок, клеевой композиции, эллиптических щелей, эллиптических проточек, отверстий, торцевых прокладок, крышки, фиксирующих прокладок, отверстий в фиксирующих прокладках, колец резиновых, внешних отводных трубок, отличающийся тем, что перфорированная трубка изготовлена с перфорацией в виде эллиптических проточек, по периметру которых расположены полуокружности, выполненные на расстоянии 5 мм друг от друга, отверстия в фиксирующей прокладке исполнены в виде равносторонних треугольников, внешние и внутренние трубки соответственно изготовлены большими в 2 раза диаметрами, внешние отводные трубки, которые с торцевой поверхности герметично припаяны к штуцерам для отвода ретентата, также выполнены большими в 2 раза диаметрами, как и штуцера для отвода прикатодного, прианодного пермеата, внешняя и внутренняя трубки перфорированы эллиптической щелью соответственно, по периметру которых расположены полуокружности, выполненные на расстоянии 5 мм и 10 мм друг от друга соответственно, пленки, имеющие насечки, углубленные в половину от ее толщины, составляют по форме ромбы, толщина сетки-турбулизатора увеличена на 20%.

Изобретение относится к фильтрации и разделению текучих сред посредством мембран. Способ фильтрации и разделения текучих сред посредством мембран, включающий в себя по существу герметичный под давлением корпус, в котором расположено множество мембран, по меньшей мере один впуск для направляемой в устройство текучей среды, подлежащей разделению, и по меньшей мере один выпуск для выводимого из устройства пермеата, а также выводимой остающейся фракции, причем мембраны выполнены в виде мембранных подушек, которые имеют область открытия для выхода собирающегося во внутреннем пространстве мембран пермеата, отличающийся тем, что в пакете мембран соответствующую часть мембран различных областей разделения эксплуатируют с соответственно предопределенным, различным давлением подлежащей разделению среды.

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электронанофильтрации, электроосмофильтрации и может быть использовано в химической, машиностроительной, пищевой, автомобилестроительной промышленности, аграрном секторе и т.
Наверх