Способ порогового обнаружения оптических сигналов

ИИзобретение относится к технике выделения сигналов из шума с помощью лавинных фотодиодов. Технический результат изобретения заключается в обеспечении максимального отношения сигнал/шум. Способ порогового обнаружения оптических сигналов с помощью лавинного фотодиода, включающий пороговую обработку сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, предварительно определяют частоту f0 пересечения шумом нулевого порога и частоту fpaб шумовых срабатываний в рабочем режиме, включают безлавинный режим смещения фотодиода, устанавливают порог срабатывания U на уровне, соответствующем частоте шумовых срабатываний порогового устройства f<<f0, увеличивают порог, этот порог фиксируют и устанавливают такой коэффициент лавинного умножения М=Мопт, при котором частота fM шумовых превышений порога UM становится равной частоте f в безлавинном режиме М=1 при пороге U, по достижении частоты fM фиксируют достигнутый коэффициент лавинного умножения М=Мопт, увеличивают порог до рабочего уровня и приступают к приему оптических сигналов. 2 з.п. ф-лы, 3 ил.

 

Предлагаемое изобретение относится к приему оптических сигналов, в частности, к технике приема сигналов с помощью лавинных фотодиодов, и может быть использовано в локации, связи и других фотоэлектронных системах.

Известен способ приема оптических сигналов с помощью лавинных фотодиодов [1]. Известны также способы стабилизации лавинного режима фотодиода, например, путем термокомпенсации рабочей точки напряжения смещения [2].

Наиболее близким к предлагаемому техническому решению является способ порогового обнаружения импульсных оптических сигналов с помощью лавинного фотодиода, напряжение смещения которого поддерживают путем стабилизации частоты шумовых импульсов, возникающих при пороговой обработке смеси сигнала и шума [3].

Недостатком этого способа является зависимость лавинного режима от выставленного порога срабатывания. Это приводит к неправильному выбору рабочей точки фотодиода и ухудшению пороговой чувствительности [4].

Задачей изобретения является обеспечение оптимальной чувствительности во всех условиях эксплуатации при гарантированной вероятности ложных срабатываний и максимальном быстродействии.

Указанная задача решается за счет того, что в известном способе порогового обнаружения оптических сигналов с помощью лавинного фотодиода, включающем пороговую обработку сигналов и формирование выходных импульсов с помощью порогового устройства при превышении сигналом с выхода фотодиода заданного порога срабатывания, предварительно определяют частоту f0 пересечения шумом нулевого порога и частоту fpaб шумовых срабатываний в рабочем режиме, включают безлавинный режим смещения фотодиода, устанавливают порог срабатывания U на уровне, соответствующем частоте шумовых срабатываний порогового устройства f<<f0, после этого увеличивают порог в где α - параметр шум-фактора лавинного умножения F=Мα, этот порог фиксируют и устанавливают такой коэффициент лавинного умножения М=Мопт, при котором частота fM шумовых превышений порога UM становится равной частоте f в безлавинном режиме М=1 при пороге U, по достижении частоты fM фиксируют достигнутый коэффициент лавинного умножения М=Мопт, увеличивают порог до рабочего уровня и приступают к приему оптических сигналов.

Частота f может выбираться из диапазона, нижняя граница которого определяется условием то есть f>>1/Т, где Т - интервал усреднения датчиков, а верхняя граница - условием f<<f0.

Увеличение порога в раз и раз можно осуществить введением в усилительный тракт перед пороговой обработкой соответствующих коэффициентов ослабления.

На фиг. 1 представлена структурная схема аппаратуры, реализующей способ. Фиг. 2 представляет циклограмму способа. На фиг. 3 показана типичная зависимость квадрата отношения сигнал/шум от коэффициента лавинного умножения.

Возможный вариант приемника по предлагаемому способу (фиг. 1) содержит лавинный фотодиод 1, выход которого через согласующий усилитель 2 и управляемые аттенюаторы 3 и 4 подключен ко входу порогового формирователя импульсов 5. Выход последнего связан со входами датчиков частоты 6 и 7. Датчик 6 подключен к управляющему входу порогового формирователя 5, а датчик 7 - к источнику смещения фотодиода 8. Датчики 6 и 7 и аттенюаторы 3 и 4 подключены к блоку управления 9. На выходе порогового формирователя установлен ключ 10, связанный с блоком управления.

Способ осуществляется следующим образом.

Предварительно (на этапе проектирования) устанавливают: частоту f0, определяемую полосой пропускания приемного тракта 1-4 до входа порогового формирователя; частоту f, удовлетворяющую оговоренным выше ограничениям и особенностям примененных аппаратных средств; частоту fpaб - по предъявляемым техническим требованиям; параметр а, определяемый конструкцией фотодиода; интервал усреднения Т датчика частоты.

Перед приемом сигналов включают подготовительный режим, в течение которого устанавливают оптимальные параметры приемного тракта - коэффициент лавинного умножения фотодиода и порог срабатывания порогового устройства. С этой целью на первом этапе с помощью блока управления 9 открывают аттенюаторы 3 и 4 и устанавливают на источнике смещения 8 низкий уровень напряжения смещения, соответствующий коэффициенту лавинного умножения М=1. Одновременно устанавливают порог срабатывания U формирователя 5 так, чтобы частота f шумовых превышений порога была значительно ниже предельной частоты f0. Это необходимо для обеспечения широкого диапазона регулировки параметров приемника. Вместе с тем, частота шумовых срабатываний должна быть достаточно высокой, чтобы оценка частоты за период усреднения Т была достоверной. Этому требованию отвечает условие означающее малое влияние среднеквадратического разброса оценки на ее среднее значение fT [7]. Например, при fo=107 Гц и времени усреднения Т=0,1с этим условиям отвечает частота f в диапазоне от 102 до 106 Гц.

По достижении установившегося значения порога U с помощью блока управления включают аттенюатор 3, вносящий ослабление тем самым, поднимающий эквивалентный порог до уровня Одновременно с помощью блока управления включают датчик частоты 7, управляющий коэффициентом лавинного умножения фотодиода путем подачи на него напряжения смещения, при котором частота шумовых срабатываний в лавинном режиме fM снова станет равна частоте f, установленной в безлавинном режиме.

После выхода на режим fM=f, напряжение смещения фотодиода с помощью блока управления фиксируют на достигнутом уровне и командой с блока управления включают аттенюатор 4, вносящий ослабление Одновременно открывают ключ 10, пропускающий выходные импульсы формирователя 5 на выход. Таким образом осуществляется переход в рабочий режим приема оптических сигналов. При этом частота шумовых срабатываний на выходе не превышает заданного допустимого значения fpaб, а коэффициент лавинного умножения фотодиода М=Мопт обеспечивает максимальное отношение сигнал/шум.

На фиг 2 представлена циклограмма способа.

T1 - длительность первого подготовительного режима - установка порога U.

Т2 - длительность переходного процесса из первого во второй подготовительный режим, установка порога UM.

Т3 - длительность второго подготовительного режима - установка оптимальной лавины.

Т4 - длительность переходного процесса из второго подготовительного режима в рабочий режим - установка порога Upaб.

Т5 - длительность рабочего режима.

Известно [5-7], что в безлавинном режиме (М=1) квадрат среднеквадратического значения шума σ на выходе фотодиода

где σ0 и σ1 - соответственно среднеквадратические значения неумножаемой (σ0) и умножаемой (σ1) составляющих шума.

Частота f пересечений порога U шумовыми выбросами в безлавинном режиме [7]

где - частота пересечения шумом нулевого порога; R"(0) - вторая производная корреляционной функции шума на входе порогового устройства R(τ) при задержке τ=0. Зная частоты f и f0 из (2) можно определить отношение порог/шум

В лавинном режиме [4]

где α - параметр шум-фактора лавинного умножения F=Мα, определяемый материалом и структурой фотодиода [4-6]. Квадрат отношения сигнал/шум

Обратная η2 величина (квадрат отношения шум/сигнал)

Производная этой величины

Минимум отношения шум/сигнал обеспечивается при dW/dM=0.

Условие (8) выполняется при

Частота шумовых превышений порога в лавинном режиме

Подстановка (9) в (10 дает выражение частоты шумовых превышений порога при М=Мопт. С учетом всегда имеющего место условия σ02 >> σ12

Из (2) и (11) получается отношение частот f(M=Mопт) и f(M=1).

Подстановка (3) в (12) дает

Как следует из (12) и (13), при постоянных значениях коэффициента а, зависящего от конструкции фотодиода, и U/σ, задаваемом частотой f, отношение f(Mопт)/f полностью определяется этими параметрами и также является постоянным параметром способа.

В свою очередь, частота f(Morrr). соответствует оптимальной величине коэффициента лавинного умножения, обеспечивающего максимальное отношение сигнал/шум. Это методическое постоянство упрощает процедуру настройки как в процессе отладки приемника, так и в его рабочем режиме при подготовке к приему сигналов.

Из этого следует также, что частота f может быть любой в самом широком диапазоне при выполнении условий

Основное расчетное соотношение предлагаемого способа вытекает из (2) и (11).

Из равенства этих частот при следует

откуда отношение порогов во втором и первом подготовительных режимах

Скачок порога из второго подготовительного режима в рабочий режим определяется применением выражения (3) при подстановке соответствующих параметров

Особенность предлагаемого способа - постоянство параметров (16) и (17), выбираемых на этапе проектирования и неизменных в процессе эксплуатации во всех условиях. Вторая существенная особенность - одинаковая частота f в первом и втором подготовительных режимах позволяет выбирать ее в максимальной близости к предельной частоте f0, что дает возможность реализовать минимальное время выхода на рабочий режим и минимальные случайные колебания аппаратной оценки частоты при реализации способа. Третья важная особенность данного способа - в области оптимальной лавины имеет место слабая зависимость отношения сигнал/шум от коэффициента лавинного умножения. На фиг. 3 представлен типичный для этой зависимости график. При оптимальном значении коэффициента лавинного умножения Мопт=26 на границах широкого диапазона М от 18 до 46 происходит лишь пятипроцентное ухудшение отношения сигнал/шум.

В свою очередь М слабо зависит от погрешности задания частоты f. Нетрудно показать, что двадцатипроцентная ошибка задания частоты f приводит к отклонению М всего на 10%. Это делает возможным достижение практически любой точности Мопт при минимальном значении параметра fT, в основном определяющем случайное отклонение f от номинального значения.

Пример 1

Исходные данные:

01)2=900; α=0,5 (Si лавинный фотодиод); f0=107 Гц; f=106 Гц; fpaб=10 Гц.

Пример 2 (то же при высокой температуре или при фоновой засветке, уменьшающих отношение σ01).

Исходные данные:

01)2=100; α=0,5 (Si лавинный фотодиод); f0=107 Гц; f=106 Гц; fpaб=10 Гц.

Время усреднения Т датчиков частоты выбирают из условия (14) при учете соотношения Т ~ Тr [7], где Тr - время выхода на режим.

Пример 3

Исходные данные:

(σ0/σ1)2=900; α=0,5 (Si лавинный фотодиод); f0=107 Гц; f=106 Гц; fpаб=10 Гц.

откуда Т=100/f=10-4 с.

Время подготовки к работе Тn ~ 2 Т=2⋅10-4 с.

В известном способе при тех же допущениях время Тn ~ 1-3 с [7], то есть выигрыш по сравнению с аналогом составляет четыре порядка, что позволяет использовать предлагаемый способ в быстродействующих частотных системах.

Пример 4

Исходные данные:

fT=100. М=26.

Относительное среднеквадратическое отклонение ошибки задания частоты f равно При этом относительное среднеквадратическое отклонение σм коэффициента лавинного умножения от номинального значения составит 5%. То есть в стандартных пределах ± 3σм окажется диапазон М от 22 до 30, что, как видно из фиг. 3 может привести к ухудшению отношения сигнал/шум относительно потенциального значения не более чем на 1%.

Таким образом, описанный способ решает поставленную задачу обеспечения оптимальной чувствительности во всех условиях эксплуатации при гарантированной вероятности ложных срабатываний и максимальном быстродействии.

Источники информации

1. Росс М. Лазерные приемники. - М.: Мир., 1969. - 520 с.

2. Патент РФ №2248670. Устройство включения лавинного фотодиода в приемнике оптического излучения. 2005 г.

3. US pat. 4,077,718. Receiver for optical radar. 1978. - прототип.

4. Вильнер В.Г., Лейченко Ю.А., Мотенко Б.Н. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. Оптико-механическая промышленность, 1981, №9, - С. 59.

5. Анисимова И.Д. и др. Полупроводниковые фотоприемники: Ультрафиолетовый, видимый и ближний инфракрасный диапазоны спектра. Под ред. В.И. Стафеева. - М.: Радио и связь, 1984. - 216 с.

6. Филачев А.М., Таубкин И.И., Тришенков М.А. Твердотельная фотоэлектроника. Фотодиоды. - М.: Физматкнига, 2011. - 448 с.

7. Вильнер В. Г. Проектирование пороговых устройств с шумовой стабилизацией порога. - Оптико-механическая промышленность, 1984, №5, С. 39-41.

1. Способ порогового обнаружения оптических сигналов с помощью лавинного фотодиода, включающий пороговую обработку сигналов и формирование выходных при превышении сигналом с выхода фотодиода заданного порога срабатывания, отличающийся тем, что предварительно определяют частоту f0 пересечения шумом нулевого порога и частоту fpaб шумовых срабатываний в рабочем режиме, включают безлавинный режим смещения фотодиода, устанавливают порог срабатывания U на уровне, соответствующем частоте шумовых срабатываний порогового устройства f << f0, увеличивают порог в где α - параметр шум-фактора лавинного умножения F=Мα, этот порог фиксируют и устанавливают такой коэффициент лавинного умножения М=Мопт, при котором частота fM шумовых превышений порога UM становится равной частоте f в безлавинном режиме М=1 при пороге U, по достижении частоты fM фиксируют достигнутый коэффициент лавинного умножения М=Мопт, увеличивают порог до рабочего уровня и приступают к приему оптических сигналов.

2. Способ по п. 1, отличающийся тем, что частоту f выбирают из диапазона, нижняя граница которого определяется условием где Т - интервал усреднения датчиков, а верхняя граница - условием f << f0.

3. Способ по п. 1, отличающийся тем, что увеличение порога в раз и раз осуществляют включением в усилительный тракт перед пороговым устройством соответствующих коэффициентов ослабления с помощью управляемых аттенюаторов.



 

Похожие патенты:

Изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума с помощью лавинных фотодиодов. Технический результат изобретения заключается в обеспечении максимального отношения сигнал/шум во всех условиях эксплуатации.

Изобретения относятся к лавинным фотодетекторам (ЛФД) - быстродействующим, высокочувствительным приборам, широко используемым в лидарах, системах связи, технического зрения, робототехнике, в медицине и биологии в мониторинге окружающей среды и т.д. Предложен способ изготовления лавинного фотодетектора, включающий следующие операции: на всей поверхности полупроводниковой подложки формируют слой умножения; на поверхности слоя умножения вытравливают замкнутую канавку на глубину, равную или большую толщины слоя умножения, но меньшую суммарной толщины подложки и слоя умножения, для формирования внутри нее фотодетектора; заполняют замкнутую канавку сильнолегированным поликристаллическим кремнием с таким же типом проводимости, как у слоя умножения; на части верхней поверхности слоя умножения, ограниченной вышеупомянутой замкнутой канавкой, формируют контактный слой по меньшей мере одного лавинного усилителя, образуя за пределами этого контактного слоя область фотопреобразователя; на контактном слое формируют первый прозрачный электрод; на нижней поверхности полупроводниковой подложки формируют второй электрод.

Изобретения относятся к лавинным фотодетекторам (ЛФД) - быстродействующим, высокочувствительным приборам, широко используемым в лидарах, системах связи, технического зрения, робототехнике, в медицине и биологии в мониторинге окружающей среды и т.д. Предложен способ изготовления лавинного фотодетектора, включающий следующие операции: на всей верхней поверхности полупроводниковой подложки формируют слой умножения; на части верхней поверхности слоя умножения формируют, по меньшей мере, один лавинный усилитель, для чего по границе этой части слоя умножения вытравливают кольцевую канавку глубиной, меньшей, чем толщина слоя умножения, заполняют ее диэлектриком, а внутри области, ограниченной канавкой, наносят контактный слой упомянутого лавинного усилителя, образуя слой фотопреобразователя за пределами области, ограниченной канавкой; на верхнюю поверхность фотопреобразователя наносят слой диэлектрика; на поверхность контактного и диэлектрического слоев наносят первый электрод из прозрачного материала; на нижней поверхности полупроводниковой подложки формируют второй электрод.

Изобретения относятся к лавинным фотодетекторам (ЛФД) - быстродействующим, высокочувствительным приборам, широко используемым в лидарах, системах связи, технического зрения, робототехнике, в медицине и биологии в мониторинге окружающей среды и т.д. Предложен способ изготовления лавинного фотодетектора, включающий следующие операции: на всей поверхности полупроводниковой подложки формируют слой умножения; на всю поверхность слоя умножения наносят слой диэлектрика; на части верхней поверхности слоя умножения и слоя диэлектрика формируют по меньшей мере один лавинный усилитель, для чего в слое диэлектрика и слое умножения вытравливают выемку, боковые стенки которой покрывают слоем диэлектрика, формируют контактный слой упомянутого лавинного усилителя путем заполнения выемки сильнолегированным поликристаллическим кремнием с типом проводимости, противоположным проводимости слоя умножения, с последующей диффузией из области поликристаллического кремния в слой умножения, и фотопреобразователь, образующийся вне выемки; на поверхность контактного слоя и слоя диэлектрика наносят первый электрод из прозрачного материала; на нижней поверхности полупроводниковой подложки формируют второй электрод.

Предложено устройство фотодетектирования, в котором на виде сверху первая полупроводниковая область первого типа проводимости перекрывает по меньшей мере часть третьей полупроводниковой области, вторая полупроводниковая область перекрывает по меньшей мере часть четвертой полупроводниковой области второго типа проводимости, значение потенциала третьей полупроводниковой области в отношении электрического заряда первого типа проводимости меньше значения потенциала четвертой полупроводниковой области, а разность между значением потенциала первой полупроводниковой области и значением потенциала третьей полупроводниковой области больше разности между значением потенциала второй полупроводниковой области и значением потенциала четвертой полупроводниковой области.

Использование: для изготовления фоточувствительных приборов. Сущность изобретения заключается в том, что способ изготовления планарного лавинного фотодиода включает последовательное эпитаксиальное наращивание на подложку InP n-типа InP буферного слоя n-типа, поглощающего слоя InGaAs n-типа, разделительного слоя InGaAsP, зарядового слоя InP n-типа и слоя умножения InP n-типа; формирование защитного слоя на слое умножения InP; 1-ю ФЛГ: селективное травление светопоглощающей области в защитном слое и слое умножения InP; включающее травление светопоглощающей области защитного слоя и слоя умножения InP на заданную глубину для обеспечения заданного профиля травления с положительным наклоном боковой стенки для уменьшения кривизны области пространственного заряда (создание эффекта охранного кольца) и предотвращение раннего краевого пробоя; 2-ю ФЛГ: селективное травление защитного слоя в области охранного кольца до слоя умножения; диффузию из твердого источника в слой умножения при заданной температуре; формирование светоотражающего слоя на диффузионном слое; 3-ю ФЛГ: локальное травление через маску фоторезиста светоотражающего слоя для формирования контактного окна на светопоглощающей области; 4-ю ФЛГ: формирование слоя верхнего электрода на диффузионной области, образованной на светопоглащающей области; образование нижнего электродного слой на обратной стороне подложки, при этом селективное травление углубления в светопоглощающей области умножающего слоя InP осуществляется методом жидкостного химического травления, которое за счет подбора травителя, время травления и ориентации фотошаблона относительно кристаллографического направления на пластине, обозначенного базовым срезом, обеспечивает воспроизводимую глубину и профиль травления в указанном слое InP; диффузия Zn3P2 осуществляется в откаченной и запаянной кварцевой ампуле при заданной температуре.

Изобретение относится к области полупроводниковых приборов, конкретно к полупроводниковым лавинным фотоприемникам с внутренним усилением сигнала, и может применяться для регистрации слабых потоков световых квантов, гамма излучения и заряженных ядерных частиц. Лавинный полупроводниковый фотоприемник включает полупроводниковый слой первого типа проводимости, на поверхности которого выполнены множество полупроводниковых областей второго типа проводимости, на части поверхности которых расположены индивидуальные эмиттеры, образующие потенциальные барьеры с полупроводниковыми областями, первая и вторая проводящие шины, отделенные от полупроводникового слоя диэлектрическим слоем, индивидуальные микрорезисторы, соединяющие полупроводниковые области с первой проводящей шиной, и дополнительные индивидуальные микрорезисторы, соединяющие индивидуальные эмиттеры со второй проводящей шиной, при этом по всему периметру каждой полупроводниковой области выполнено индивидуальное охранное кольцо, а между каждой полупроводниковой областью и полупроводниковым слоем сформирована дополнительная полупроводниковая область первого типа проводимости с повышенной концентрацией легирующих примесей по сравнению с полупроводниковым слоем.

Изобретение может быть использовано для регистрации слабых световых сигналов в системах связи, мониторинга окружающей среды и других областях. Лавинный детектор содержит расположенные на одной и той же подложке фотопреобразователь оптического сигнала, подлежащего детектированию, в ток свободных носителей заряда и по меньшей мере один лавинный усилитель этого тока, имеющий два слоя: контактный и слой умножения, при этом слой умножения обращен к подложке, выполнен из полупроводникового материала того же типа проводимости, что и фотопреобразователь, и примыкает к этому фотопреобразователю, образуя с ним электрический контакт, при этом первый электрод размещен на контактном слое лавинного усилителя, а второй - на проводящей подложке.

Напряжение обратного смещения прикладывают к матрице фотодиодов, снабженной множеством лавинных фотодиодов, функционирующих в гейгеровском режиме, и гасящих резисторов, соединенных последовательно с соответствующими лавинными фотодиодами. Электрический ток измеряют при изменении приложенного напряжения обратного смещения, а в качестве опорного напряжения определяют напряжение обратного смещения в точке перегиба характеристики при изменении измеренного электрического тока.

Изобретение относится к области полупроводниковых приборов, конкретно к полупроводниковым лавинным фотодетекторам с внутренним усилением сигнала, и может применяться для регистрации слабых потоков световых квантов, гамма излучения и заряженных ядерных частиц. Полупроводниковый лавинный детектор согласно изобретению сдержит множество независимых полупроводниковых областей, расположенных на поверхности полупроводникового слоя, множество полупроводниковых областей образуют p-n-переходы с полупроводниковым слоем, общую проводящую шину, отделенную от полупроводникового слоя диэлектрическим слоем и индивидуальные микрорезисторы, соединяющие полупроводниковые области с общей проводящей шиной, при этом на части поверхности упомянутых полупроводниковых областей выполнены индивидуальные эмиттеры, образующие потенциальные барьеры с полупроводниковыми областями, причем упомянутые индивидуальные эмиттеры соединены с дополнительной проводящей шиной посредством дополнительных индивидуальных микрорезисторов.

Изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума с помощью лавинных фотодиодов. Технический результат изобретения заключается в обеспечении максимального отношения сигнал/шум во всех условиях эксплуатации.
Наверх