Способ выбора конфигурации и размеров геодезических сетей при геодинамическом мониторинге на объектах освоения недр

Способ относится к отраслям добывающей и строительной промышленности, может быть использован при геодинамическом мониторинге территорий и предназначен для отслеживания и прогноза опасных геодинамических процессов, вызванных деятельностью человека. Способ выбора размеров и конфигурации геодезических сетей при геодинамическом мониторинге на объектах освоения недр включает определение ширины зон динамического влияния разломов, создание наблюдательных систем с закрепленными опорными и рабочими пунктами на геодинамическом полигоне. Размер геодезических сетей на участках их пересечения с зонами динамического влияния разломов выбирают не менее ширины зон влияния разломов, увеличенный на двойное расстояние между реперами. Конфигурацию геодезических сетей выбирают с условием размещения опорных пунктов твердых сторон в каждом из крыльев разломов за пределами их зон динамического влияния. Технический результат состоит в снижении затрат на наблюдения за сдвижением земной поверхности по пунктам геодинамического полигона, повышении достоверности получаемых данных. 1 ил.

 

Изобретение относится к способам контроля геодинамических процессов при освоении недр и земной поверхности.

Сущность: оценивают размеры зоны динамического влияния разломов на основе геологических, геоморфологических, геохимических, геофизических или других методов, и размер геодезических сетей при геодинамическом мониторинге выбирают равный не менее ширины зоны динамического влияния разлома, увеличенный на двойное расстояние между реперами, а конфигурацию выбирают с условием размещения опорных пунктов за зоной динамического влияния разломов.

Технический результат: контроль геодинамической обстановки на объектах освоения недр.

Изобретение относится к отраслям добывающей и строительной промышленностей, может быть использовано при геодинамическом мониторинге территорий, на которых осуществляется воздействие на недра и земную поверхность и предназначено для отслеживания и прогноза опасных геодинамических процессов, вызванных деятельностью человека.

Профилактика и предупреждение опасных геодинамических процессов, связанных с деятельностью человека, прежде всего индуцированных землетрясений и аномальных проявлений процессов сдвижения, является актуальной экологической, социальной и технической проблемой в районах освоения недр и земной поверхности. Для контроля процессов сдвижения и прогноза техногенной сейсмичности в районах воздействия на недра и земную поверхность организуются геодинамические полигоны и проводится мониторинг. Изобретение направлено на сокращение затрат при контроле геодинамической безопасности освоения недр и земной поверхности.

Известен способ контроля геодинамических процессов при освоении недр и земной поверхности при эксплуатации подземного хранилища газа (ПХГ) в пористом пласте [патент РФ RU (11) 2423306(13) С1]. Способ включает создание геодинамического полигона на земной поверхности и проведение на нем комплексного геодинамического мониторинга. Комплексный геодинамический мониторинг включает проведение маркшейдерско-геодезических наблюдений для изучения вертикальных и горизонтальных смещений земной поверхности по заложенным пунктам. Пункты закладывают на всей контролируемой территории. Регистрацию горизонтальных деформаций земной коры изучаемой территории и определение их общей направленности осуществляют с помощью GPS-наблюдений. Рекомендуемые линии повторного нивелирования проводят поперек зон наиболее вероятных деформаций.

Недостатком способа является высокая трудоемкость и стоимость проведения наблюдений из-за необходимости проложения геодезических сетей большой протяженности, либо определению большого количества пунктов, подлежащих GPS-наблюдениям.

Известен способ определения конфигурации геодинамического полигона для определения вектора сдвижения. [Инструкция по производству маркшейдерских работ (РД-07-603-03)].

Согласно известному способу, расстояние между реперами по линиям наблюдений принимают равным 300-500 м. В зоне предполагаемых тектонических нарушений реперы закладывают через 100 м.

Недостатком способа является высокая трудоемкость и стоимость проведения наблюдений из-за необходимости проложения геодезических сетей большой протяженности. Другим недостатком способа является потеря информации о происходящих геодинамических процессах в зонах динамического влияния нарушений, поскольку согласно известному способу под зоной тектонического нарушения понимается предполагаемое место выхода сместителя на земную поверхность, что является только частью зоны динамического влияния нарушения.

Также известен способ создания локальных и точечных систем повторного высокоточного нивелирования на геодинамических полигонах нефтегазовых месторождений [Волков Н.В. Автореферат: «Совершенствование геодезических методов решения геомеханических и геодинамических задач подрабатываемых территорий нефтегазовых комплексов, Санкт-Петербург 2020.], который обеспечивает раздельное определение значимых с позиций точности и репрезентативности величин скоростей вертикальных деформаций земной поверхности, коллекторов и залегающих над ними горных массивов при значительном сокращении объемов повторного нивелирования. Например, на территории Ямбургского месторождения для решения геомеханических и геодинамических задач создана сеть, состоящая из 17 контрольных площадок (КП), 2 профильных линий (ПЛ) и 4 геодинамических профилей (ГП). Каждая из наблюдательных систем закреплена опорными и контрольными нивелирными пунктами. Опорные нивелирные пункты размещены вне интегрального контура добычи газа по вертикали. Геодинамические профили выбраны так, чтобы они пересекали глубинные разломы и тектонически напряженные зоны.

Недостаток способа заключается в том, что длина нивелирных профилей выбирается без учета ширины зон динамического влияния разломов. По известному способу геодинамический профиль без учета ширины зоны динамического влияния разлома может оказаться недостаточной протяженности, что приведет к потере важной информации и снижению достоверности в интерпретации данных. Напротив, профиль может иметь излишнюю протяженность, что приведет к дополнительным затратам на маркшейдерско-геодезические наблюдения.

Наиболее близок к предлагаемому изобретению является способ охраны наземных объектов от последствий деформационных процессов, инициированных разработками месторождений нефти и газа [патент РФ RU (11) 2450105 С1].

Согласно этому способу закладку станции реперов геодинамического полигона и наблюдения за их сдвижениями начинают в зонах динамического влияния разломов и в областях высоких современных тектонических деформаций.

Недостатком этого способа является низкая достоверность получаемых данных, поскольку все репера предлагается располагать в зоне динамического влияния разлома, что исключает привязку наблюдений к опорному пункту и соответственно приводит к искажению получаемой информации.

Технический результат изобретения заключается в снижении затрат на наблюдения за сдвижением земной поверхности по пунктам геодинамического полигона и повышении достоверности получаемых данных.

Технический результат достигается следующим образом. Геологическими, геоморфологическими, геохимическими, геофизическими или другими методами определяют ширину В зон динамического влияния разломов, например, по формуле [Разрывные нарушения угольных пластов. М. Недра, 1979]:

В=10Н

Геодезические сети для наблюдений за смещениями земной поверхности закладывают длиной не менее В+2l поперек зон влияния разломов, где l - расстояние между реперами. Конфигурацию профиля на местности создают таким образом, чтобы в каждом крыле разлома не менее чем одна твердая сторона располагалась бы за пределами зоны влияния разлома, что позволит обеспечить применение как классических методов наблюдений, так и GPS/ГЛОНАСС.

Способ поясняется на фигуре 1. Цифрами и буквами обозначены следующие элементы: 1 - нивелирный ход; 2 - нивелирный ход, совмещенный со стороной треугольника геодезической сети; 3 - репер плановой геодезической сети; 4 - сторона геодезической сети; 5 - опорный репер геодезической сети; 6 - граница области динамического влияния разлома; 7 - тектонический разлом; 8 - твердая сторона; В - зона влияния разломов; L - протяженность (размер) геодезической сети.

Реализация метода возможна на основании того, что ширина зон динамического влияния разломов, влияющих на протекание геомеханических процессов и деформации земной поверхности на участках освоения недр, ограничена и зависит от амплитуды смещения крыльев разлома. Амплитуду смещения можно установить по результатам геодинамического районирования по смещению крыльев разлома в рельефе [Геодинамика недр. Методические указания. Л.: ВНИМИ. 1990]. Например, для условий района г. Шахты-Новошахтинск Ростовской области (Восточный Донбасс) ширина зон влияния разломов составляет от 50 до 1200 м [Мусина В.Р., Головко И.В., Шерматова С. Типизация пересечения углепородных отвалов геодинамически опасными зонами // Горный информационно-аналитический бюллетень. 2020. - №6/1. - С.233-241].

Способ выбора размеров и конфигурации геодезических сетей при геодинамическом мониторинге на объектах освоения недр, включающий определение ширины зон динамического влияния разломов, создание наблюдательных систем с закрепленными опорными и рабочими пунктами на геодинамическом полигоне, отличающийся тем, что размер геодезических сетей на участках их пересечения с зонами динамического влияния разломов выбирают не менее ширины зон влияния разломов, увеличенный на двойное расстояние между реперами, а конфигурацию геодезических сетей выбирают с условием размещения опорных пунктов твердых сторон в каждом из крыльев разломов за пределами их зон динамического влияния.



 

Похожие патенты:

Изобретение относится к измерительной технике, предназначено для измерения напряжений в грунтах и может быть использовано в строительстве, экспериментальных исследованиях. Технический результат состоит в повышении точности и достоверности определения напряжений в грунте.

Группа изобретений относится к области строительства, а именно к лабораторным исследованиям грунтов, и может быть использована для определения прочностных характеристик мерзлых грунтов и грунтовых растворов. Способ приготовления образцов с цементно-песчаным раствором для определения сопротивления сдвигу по поверхности смерзания с фундаментом и по грунту включает заполнение формы для срезного прибора цементно-песчаным раствором, материалом фундамента или грунтом, охлаждение полученных образцов до заданной температуры, герметизацию и хранение их до начала испытаний.

Изобретение относится к грунтоведению, а именно к способам определения усадки глинистых грунтов при высыхании. Техническим результатом является упрощение способа определения и контроля усадки двухфазных глинистых грунтов.

Изобретение относится к грунтоведению, а именно к способам определения набухания глинистых грунтов при их увлажнении. Техническим результатом является упрощение способа определения набухания двухфазных глинистых грунтов.

Изобретение относится к строительству и может быть использовано для определения просадок многолетнемёрзлых грунтов при их оттаивании. Устройство для определения коэффициента оттаивания многолетнемёрзлых грунтов, включающее котлован, площадью А, м2, назначаемой в зависимости от глубины h2, м, определения коэффициента оттаивания, коэффициента бокового давления оттаявшего грунта ξ, угла внутреннего трения ϕ, град., оттаявшего грунта по приведенной формуле, с выделенным целиком-столбом грунта площадью А, м2, отделенным от окружающего грунта посредством пробуренных и часто расположенных скважин.

Изобретение относится к строительству применительно к определению деформационных и прочностных свойств грунтов. Прибор содержит гильзу для образца грунта, перфорированные днище и поршень, механизм нагружения поршня, по меньшей мере, два размещенных в поршне штампа, составленных из втулок, вставленных друг в друга, и механизм нагружения штампов.

Изобретение относится к строительству и, в частности, к устройствам для определения деформационных свойств грунтов. Штамп для определения деформационных свойств грунтов включает плоский диск с ребрами жесткости, стол для установки домкрата.

Изобретение относится к строительству, а именно к способам испытания свай статической нагрузкой. Способ испытания грунтового основания сваей включает приложение на модельную сваю вдавливающей силы, непрерывно возрастающей с постоянной скоростью, синхронную регистрацию вдавливающей силы, времени ее приложения и осадки сваи с шагом 0,005 мм осадки сваи, причем в качестве модельной сваи используют натуральную буронабивную сваю в фундаменте сооружения, на нижнем конце модельной сваи размещают датчик давления грунта, на боковой поверхности модельной сваи размещают измерители вертикальной деформации грунта относительно боковой поверхности сваи и на уровнях измерителей размещают глубинные марки по замкнутому контуру в плане радиусом 1-2 диаметра сваи от оси сваи, в направлениях от оси модельной сваи на соседние рабочие сваи в данном свайном фундаменте, при этом дополнительно регистрируют вертикальную деформацию грунта относительно боковой поверхности сваи, вертикальные перемещения глубинных марок, давление грунта под нижним концом сваи синхронно регистрации осадки сваи с шагом 0,005 мм осадки сваи, а после достижения конечного значения вдавливающей силы при ее постоянной величине до стабилизации осадки модельной сваи по условию 0,005 мм/ч синхронно регистрируют осадку сваи, время ее регистрации, вертикальные деформации грунта относительно боковой поверхности сваи и вертикальные перемещения глубинных марок во всех уровнях их размещения и давление грунта под нижним концом сваи синхронно осадке сваи с шагом 0,005 мм осадки сваи.

Изобретение относится к строительству, а именно к исследованию прочностной характеристики мерзлого грунта, и может быть использовано в инженерной геологии при исследовании свойств грунтов до начала строительства, а также при реконструкции зданий и сооружений. Способ определения прочности смерзания грунта включает размещение исследуемого грунта в форме, их промораживание, прикладывание продавливающего усилия и фиксацию усилия среза образца грунта по образцу материала фундамента.
Изобретение относится к области строительства и предназначено для инженерно-геологических и геотехнических изысканий, проводимых при проектирования оснований объектов капитального строительства. Способ проведения инженерно-геологических и геотехнических изысканий с помощью измерительно-вычислительного комплекса, содержащего буровую установку, компьютер, механизм силового нагружения, устройства для полевых испытаний грунтов, программные средства обработки данных измерений и управления механизмом силового нагружения, корреляционные зависимости между параметрами испытаний и характеристиками грунтов.

Изобретение относится к области строительства и может быть использовано для определения параметров прочности мерзлых и оттаивающих грунтов при проведении геомеханических изысканий для проектирования и обследования оснований различных сооружений в криолитозоне. Способ определения параметров длительной прочности мерзлых грунтов при различных температурах в натурных условиях включает нагружение штампа максимальным значением сжимающей нагрузки, ступенчатым нагружением штампа касательной сдвигающей нагрузкой до сдвиговых деформаций, близких к предельным, дальнейшее испытание в режиме ползучести - релаксации до стабилизации касательных напряжений, последующее ступенчатое уменьшение вертикальной сжимающей нагрузки и выдерживание во времени релаксирующей касательной нагрузки до стабилизации ее значений, затем уменьшение абсолютного значения отрицательной температуры и повторение операций при новом значении температуры, определение по полученным парам значений стабилизированных касательных и нормальных напряжений параметров прочности грунта при данном значении отрицательной температуры. Нагружение массива осуществляется по кольцевой поверхности посредством инвентарного штампа и кольцевой формы подошвы с радиальными ребрами, снабженными датчиками температуры и термонагревателями. Контакт штампа с грунтом создают путем внедрения ребер в грунт. Сдвигающую касательную нагрузку создают, прикладывая к штампу крутящий момент через упругий элемент. Температуру исследуемого участка грунта ступенчато изменяют в сторону увеличения или уменьшения абсолютных значений путем изменения температуры поверхности под кольцевой подошвой штампа, внутри и вне его, измеряя значение температуры в плоскости сдвига под нижними гранями ребер штампа. Технический результат состоит в обеспечении возможности в полевых условиях по результатам одного испытания определить параметры длительной прочности мерзлого грунта при различных значениях отрицательных температур и в процессе оттаивания, при снижении трудоемкости подготовительных работ, времени проведения испытания, повышении точности испытаний. 2 н. и 3 з.п. ф-лы, 4 ил.
Наверх