Способ и система для удаления твердых частиц и азотистых соединений из дымового газа с применением керамического фильтра и scr катализатора

Авторы патента:

B01D53/8628 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

Владельцы патента RU 2760254:

ХАЛЬДОР ТОПСЁЭ А/С (DK)

Настоящее изобретение относится к способу и системе для восстановления эмиссионных твердых частиц и оксидов азота (NOx) из отходящего и дымового газов. Дымовой газ пропускают через один или более керамических фильтров, катализированных катализатором селективного восстановления оксидов азота, в присутствии аммиака, добавленного в дымовой газ либо как таковой, либо в форме его предшественника. При температуре ниже 250°С вводят отходящий газ, содержащий диоксид азота, в дымовой газ перед одним или более керамическими фильтрами. Отходящий газ, содержащий диоксид азота, получают путем каталитического окисления аммиака или его предшественника содержащей кислород атмосферой до отходящего газа, содержащего монооксид азота и кислород, в присутствии катализатора окисления. Далее отходящий газ охлаждают до температуры окружающей среды (от -20 до +40°С) и окисляют монооксид азота в охлажденном отходящем газе до отходящего газа, содержащего диоксид азота. Содержащий диоксид азота отходящий газ вводят в дымовой газ в количестве, приводящем к тому, что от 45 до 55 об.% оксидов азота представляют собой диоксид азота на входе в катализатор селективного восстановления оксидов азота. Технический результат: повышение эффективности катализатора SCR при температуре газа ниже 250°С. 2 н. и 8 з.п. ф-лы.

 

Настоящее изобретение относится к способу и системе для восстановления эмиссионных твердых частиц и оксидов азота (NOx) из отходящего и дымового газов. В частности, способ и система согласно настоящему изобретению обеспечивают улучшенное восстановление NOx при низких температурах газа.

Дымовые газы из различных сжигательных установок, например, газ котлов силовых установок, работающих на твердом или жидком топливе, работающих на нефти генераторов или цементных печей, установок для сжигания на биотопливе и мусоросжигательных установок, содержат ряд вредных для окружающей среды или даже ядовитых соединений. Они содержат твердые частицы и NOx.

Применение фильтров для улавливания твердых частиц и каталитического очищения дымового газа сокращает количество твердых частиц и NOx и, поэтому, в общем благоприятно для окружающей среды. В большинстве областей законодательство требует снижения NOx в дымовом газе.

Керамические фильтры, например в форме фильтровальных патрон используются во многих отраслях промышленности для удаления твердых частиц из технологических газов. Они являются одним из наиболее эффективных типов доступных пылеуловителей и могут достигать более 99% эффективности улавливания твердых частиц. Фильтры могут быть изготовлены из различных керамических материалов, содержащих керамические волокна, изготовленные из силикатов щелочных и щелочноземельных металлов или алюмосиликатов.

Керамические фильтры на основе керамических волокон, импрегнированных активными катализаторами, для удаления NOX, NH3, диоксинов, СО и различных VOC вместе с пылью раскрыты в WO 2016150464.

В частности, катализаторы на основе оксида ванадия являются повсеместно применяемыми катализаторами для восстановления NOx посредством селективного восстановления NOx с NH3 в стационарных и автомобильных применениях.

Эти катализатора активны как для удаления углеводородов (VOC), так и NOx посредством объединения окисления и SCR реакции с NH3.

При селективном каталитическом восстановлении (SCR) NOx, соединения оксида азота селективно восстанавливаются до безвредных азота и воды посредством реакции с восстанавливающим агентом, например, аммиаком, над катализатором.

Проблема известного активного катализатора SCR состоит в относительно низкой эффективности при температуре газа ниже 250°С. Низкая температура дымовых газов, в частности, при запуске и остановке сжигательных установок создает проблему для удаления NOx посредством SCR.

Эта проблема решается настоящим изобретением посредством введения NO2 в дымовой газ при температурах ниже 250°С, чтобы промотировать "быструю" реакцию SCR.

Известно, что реакция SCR может быть значительно ускорена, а низкотемпературная активность может быть значительно повышена при эквимолярных количествах NO и NO2 в дымовой газе при «быстрой» реакции SCR:

2NH3+NO+NO2→2N2+3H2O.

Таким образом, настоящее изобретение основано на образовании NO2 снаружи дымовой трубы и введении полученного NO2 в дымовой газ в количестве, которое способствует так называемой «быстрой» реакции SCR. NO2 может быть образован из NH3 путем окисления NH3 до NO над катализатором, содержащим благородный металл, на первой стадии, и затем окисления NO до NO2 на второй стадии.

Первым объектом настоящего изобретения является способ удаления оксидов азота из дымового газа из сжигательных установок, включающий стадии пропускания дымового газа через один или более керамических фильтров, катализированных катализатором селективного восстановления оксидов азота в присутствии аммиака, добавленного в дымовой газ либо как таковой, либо в форме его предшественника;

при температуре ниже 250°С введения отходящего газа, содержащего диоксид азота, в дымовой газ перед одним или более керамическими фильтрами; обеспечения отходящего газа, содержащего диоксид азота, посредством стадий каталитического окисления аммиака или его предшественника содержащей кислород атмосферой до отходящего газа, содержащего монооксид азота и кислород, в присутствии катализатора окисления;

охлаждения отходящего газа до температуры окружающей среды и окисление монооксида азота в охлажденном отходящем газе до отходящего газа, содержащего диоксид азота.

Предпочтительно, керамический фильтр(фильтры) находится в форме патронного фильтра(фильтров).

При температурах дымового газа выше 250°С, катализаторы SCR имеют достаточную эффективность, и введение NO2 в дымовой газ может быть прервано, когда температура газа достигает 250°С.

Окисление аммиака до NO снаружи дымовой трубы обычно осуществляют в реакторе с использованием катализатора на основе благородного металла, как правило, платины или сплава платины с другими драгоценными металлами в качестве второстепенных компонентов при температуре реакции от 250 до 800°С в присутствии содержащей кислород атмосферы.

Для обеспечения требуемой температуры реакции, реактор окисления может быть нагрет посредством, например, электрического нагрева или индукционного нагрева.

В варианте выполнения настоящего изобретения содержащая кислород атмосфера включает горячий рециркулирующий дымовой газ, который обеспечивает затем дополнительную часть тепловой нагрузки реактора окисления.

Предпочтительно, содержащая кислород атмосфера представляет собой воздух окружающей среды.

NO, образующийся из NH3 на первой стадии путем окисления NH3 при контакте с катализатором, содержащим благородный металл, затем окисляется до NO2 в отходящем газе, содержащем NO, с первой стадии путем охлаждения газа до температуры окружающей среды, чтобы направить равновесную реакцию в направлении образования NO2.

Термин «температура окружающей среды», как применяется в настоящей заявке, означает любую температуру, преобладающую в окружающей среде установки для сжигания, использующей способ и систему согласно настоящему изобретению. Как правило, температура окружающей среды составляет от -20°С до +40°С.

Охлаждение и окисление содержащего NO отходящего газа можно проводить в реакторе состаривания, с такими размерами, чтобы время пребывания газа составляло около 1 минуты или более. Как правило, от 1 до 2 минут.

В варианте выполнения настоящего изобретения реакцию окисления проводят в присутствии катализатора, промотирующего окисление NO до NO2. Эти катализаторы известны в данной области техники и включают Pt на ТiO2, Pt на SiO2 и активированный углерод или Pt и/или Pd на оксиде алюминия.

Как упомянуто выше в настоящей заявке, для желаемой быстрой реакции SCR требуются равные количества NO и NO2. Следовательно, количество NO2, вводимого в дымовой газ при температуре ниже 250°С, контролируют таким образом, что от 45 до 55 об.% содержания оксидов азота в дымовом газе составляет NO2 на входе в каталитический узел SCR.

Вторым объектом настоящего изобретения является система для применения в способе согласно настоящему изобретению.

Система содержит внутри дымовой трубы камеру фильтра с одним или более керамическими фильтрами, катализированными катализатором селективного восстановления оксидов азота;

перед одним или более керамическими фильтрами или камерой фильтра средство введения для введения раствора аммиака или мочевины в дымовую трубу;

перед одним или более керамическими фильтрами или камерой фильтра, средство введения для введения содержащего диоксид азота отходящего газа; и

снаружи дымовой трубы,

каталитический узел окисления аммиака; и

средство охлаждения и окисления содержащего монооксид азота отходящего газа, извлеченного из катализатора окисления аммиака до отходящего газа, содержащего диоксид азота, соединенное на его выходном конце со средством введения для введения содержащего диоксид азота отходящего газа.

Как упомянуто выше, реакция окисления NO в NO2 требует времени пребывания газа, содержащего NO, по меньшей мере 1 минута. Как правило, 1-2 минуты.

Это может быть достигнуто в теплообменнике либо с охлаждением газом, либо с охлаждением водой, или, альтернативно, при формировании охлаждающего и окислительного средства в виде скрученной в спираль трубы с длиной, приводящей к желаемому времени пребывания газа, проходящего через трубу.

В другом варианте выполнения настоящего изобретения, средство охлаждения и окисления содержащего монооксид азота отходящего газа снабжено катализатором окисления, промотирующим окисление NO в NO2.

Во всех вариантах выполнения системы согласно настоящему изобретению, один или более керамических фильтров находятся в форме керамических патронных фильтров.

1. Способ удаления оксидов азота из дымового газа из сжигательных установок, включающий стадии

пропускания дымового газа через один или более керамических фильтров, катализированных катализатором селективного восстановления оксидов азота, в присутствии аммиака, добавленного в дымовой газ либо как таковой, либо в форме его предшественника;

при температуре ниже 250°С введения отходящего газа, содержащего диоксид азота, в дымовой газ перед одним или более керамическими фильтрами;

обеспечения отходящего газа, содержащего диоксид азота, посредством стадий

каталитического окисления аммиака или его предшественника содержащей кислород атмосферой до отходящего газа, содержащего монооксид азота и кислород, в присутствии катализатора окисления;

охлаждения отходящего газа до температуры окружающей среды и окисление монооксида азота в охлажденном отходящем газе до отходящего газа, содержащего диоксид азота,

где содержащий диоксид азота отходящий газ вводят в дымовой газ в количестве, приводящем к тому, что от 45 до 55 об.% оксидов азота представляют собой диоксид азота на входе в катализатор селективного восстановления оксидов азота.

2. Способ по п. 1, где содержащая кислород атмосфера содержит дымовой газ.

3. Способ по п. 1, где содержащая кислород атмосфера представляет собой воздух окружающей среды.

4. Способ по п. 1, где окисление монооксида азота в охлажденном отходящем газе до отходящего газа, содержащего диоксид азота, осуществляют в присутствии катализатора окисления.

5. Способ по любому из пп. 1-4, где один или более керамических фильтров находятся в форме керамических патронных фильтров.

6. Система для применения в способе по любому из пп. 1-5, содержащая внутри дымовой трубы камеру фильтра с одним или более керамическими фильтрами, катализированными катализатором селективного восстановления оксидов азота;

перед одним или более керамическими фильтрами или камерой фильтра средство введения для введения раствора аммиака или мочевины в дымовую трубу;

перед одним или более керамическими фильтрами или камерой фильтра, средство введения для введения содержащего диоксид азота отходящего газа; и

снаружи дымовой трубы,

каталитический узел окисления аммиака; и

средство охлаждения и окисления содержащего монооксид азота отходящего газа, извлеченного из катализатора окисления аммиака до отходящего газа, содержащего диоксид азота, соединенное на его выходном конце со средством введения для введения содержащего диоксид азота отходящего газа,

где содержащий диоксид азота отходящий газ вводят в дымовой газ в количестве, приводящем к тому, что от 45 до 55 об.% оксидов азота представляют собой диоксид азота на входе в катализатор селективного восстановления оксидов азота.

7. Система по п. 6, где средство охлаждения и окисления содержащего монооксид азота отходящего газа находится в форме теплообменника.

8. Система по п. 6, где средство охлаждения и окисления содержащего монооксид азота отходящего газа находится в форме скрученной в спираль трубы.

9. Система по п. 6, где средство охлаждения и окисления содержащего монооксид азота отходящего газа снабжено катализатором окисления.

10. Система по любому из пп. 6-9, где один или более керамических фильтров находятся в форме керамических патронных фильтров.



 

Похожие патенты:

Изобретение относится к технологии приготовления катализаторов, предназначенных для осуществления гетерогенно-каталитических реакций, протекающих в неподвижном (стационарном) слое катализатора, например в трубчатых реакторах. Описан катализатор для гетерогенных реакций, включающих глубокое окисление углеводородов, гетерогенно-катализируемый процесс парциального газофазного окисления пропилена до акриловой кислоты, получение муравьиной кислоты в виде формованной гранулы, имеющей форму «кольцо-блок», «кольцо в кольце», включающий каталитический элемент, отличающийся тем, что внутри гранулы выполнено осесимметрично центральное сквозное отверстие, имеющее в поперечном сечении квадрат или круг, которые связаны с помощью осесимметричных перегородок с внутренней поверхностью наружного кольца гранулы с образованием сквозных отверстий некруглого поперечного сечения, все внутренние стенки отверстий имеют одинаковую толщину 1,5-3,5 мм, при этом отношение значений внешней поверхности гранулы к значениям ее объема составляет 2,5-6,0 см-1, каталитический элемент включает соединение одного или более элементов, выбранных из K, Ва, Al, Si, V, Ti, Cr, Μn, Fe, Co, Ni, Cu, Zn, Mo.

Изобретение может быть использовано при очистке выхлопных газов двигателей внутреннего сгорания. Предложен смешанный оксид циркония, церия, лантана и необязательно по меньшей мере одного редкоземельного элемента, отличного от церия и лантана (РЗЭ), также содержащий гафний.

Изобретение относится к области материаловедения и нанотехнологий, а именно к получению диоксида титана, который может быть использован в водородной энергетике и технологиях очистки воды. Способ включает генерирование титановой электроразрядной плазмы в первую камеру 19, предварительно вакуумированную и наполненную газовой смесью аргона и кислорода в соотношении парциальных давлений Ar:O2 1:4 при нормальном атмосферном давлении и комнатной температуре, с помощью коаксиального магнитоплазменного ускорителя с титановым стволом 1 и с составным центральным электродом из наконечника из титана 2 и хвостовика из стали 3, с электрически плавкой перемычкой из вазелина 4 массой от 0,10 до 0,25 г, размещенной между титановым стволом 1 и наконечником 2, при емкости конденсаторной батареи 18, равной 14,4 мФ, и зарядном напряжении 2,8 кВ, затем перемещают нанокристаллическую составляющую синтезированного продукта во вторую, предварительно вакуумированную, камеру 27, открывая перепускной клапан 28 между камерами 19 и 27 через 10 с после генерации электроразрядной плазмы, после чего собирают с внутренних стенок второй камеры 27 полученный диоксид титана со структурой анатаза.

Настоящее изобретение относится к изделию дизельного катализатора окисления, содержащему подложку, имеющую покрытие, содержащее композицию дизельного катализатора окисления, расположенную на ней, причем композиция дизельного катализатора окисления содержит: множество наночастиц металла платиновой группы, выбранного из группы, состоящей из Pt, Pd, Ag, Ru, Rh, Ir, Os, их сплавов и их смесей, где 90% или более металла платиновой группы находится в полностью восстановленной форме, где наночастицы имеют средний размер частиц от 1 до 10 нм, и по меньшей мере 90% наночастиц имеют размер частиц +/- 2 нм от среднего размера частиц; и необязательно материал оксида тугоплавкого металла, причем композиция свободна от галогенидов, щелочных металлов, щелочноземельных металлов, соединений серы и соединений бора.

Изобретение может быть использовано при секвенировании генома. Предложено каталитически активное вещество, содержащее минеральную частицу сульфида меди(I) и молекулу, функционализированную алкином, непосредственно связанную с поверхностью минеральной частицы сульфида меди(I).

Изобретение относится к композиту катализатора для удаления закиси азота (N2O). Описан композит катализатора для удаления закиси азота (N2O) для обработки потока выхлопного газа двигателя внутреннего сгорания, работающего в условиях, которые являются стехиометрическими или обедненными, с периодическими временными переходами к обогащенной топливной смеси, причем этот композит катализатора содержит: каталитический материал для удаления N2O на носителе, этот каталитический материал содержит компонент металла платиновой группы (МПГ), нанесенный на носитель, содержащий оксид церия, имеющий однофазную кубическую кристаллическую структуру флюорита, причем каталитический материал для удаления N2O эффективен для разложения N2O в потоке выхлопного газа до азота (N2) и кислорода (O2) или для восстановления N2O до N2 и воды (H2O) или диоксида углерода (CO2), причем носитель, содержащий оксид церия, имеет объем пор по меньшей мере 0,20 см3/г.

Изобретение относится к кристаллической форме 6,6'-[[3,3',5,5'-тетракис(1,1-диметилэтил)-[1,1'-бифенил]-2,2'-диил]бис(окси)]бисдибензо[d,f][1,3,2]-диоксафосфепина Формулы (I), демонстрирующей два отражения наибольшей интенсивности, указанные в виде значений 2Θ, при 7,8 ± 0,2° и 19,7 ± 0,2° на порошковой рентгеновской дифрактограмме, полученной при 25°C с применением излучения Cu-Kα; где кристаллическая форма не содержит растворителя; и где кристаллическая форма имеет температуру плавления 202-208°С.

Настоящее изобретение относится к катализатору и катализаторной группе, которые используют при проведении газофазной реакции каталитического окисления олефина или третичного бутанола с целью получения соответствующего ненасыщенного альдегида и/или ненасыщенной карбоновой кислоты, и к катализатору и катализаторной группе, которые используют при проведении газофазной реакции каталитического окисления ненасыщенного альдегида с целью получения соответствующей ненасыщенной карбоновой кислоты, а также к способам производства акролеина и/или акриловой кислоты.

Настоящее изобретение относится к катализатору и катализаторной группе, которые используют при проведении газофазной реакции каталитического окисления олефина или третичного бутанола с целью получения соответствующего ненасыщенного альдегида и/или ненасыщенной карбоновой кислоты, и к катализатору и катализаторной группе, которые используют при проведении газофазной реакции каталитического окисления ненасыщенного альдегида с целью получения соответствующей ненасыщенной карбоновой кислоты, а также к способам производства акролеина и/или акриловой кислоты.

Изобретение относится к области изготовления катализаторов методом трехмерной печати (3D печати). Предлагается способ получения каталитических материалов методом 3D печати на основе керамических порошков и/или тонкодисперсных наноструктурированных порошков с размером кристаллитов, близким к рентгеноаморфности кристаллической структуры - менее 5 нм, и их получение включает следующие стадии: 1) предварительное компьютерное моделирование гидродинамических характеристик катализаторного слоя для разных вариантов геометрии гранул/пеллет и заданных: геометрии реакторного блока, условий реакции - давления, температуры, состава и скорости движения реакционного потока; 2) выбор оптимального варианта размера, формы и внутренней пространственной структуры каналов-пор гранул/пеллет; 3) 3D проектирование оптимизированных гранул/пеллет для реализации 3D печати; 4) 3D печать оптимизированных гранул/пеллет одним из известных способов.

Изобретение относится к способу удаления сероводорода и регенерации серы из газового потока, содержащего сероводород, прямым каталитическим окислением и реакцией Клауса, более определенно к контролю и оптимизации такого способа. Способ осуществляется с помощью двух или более последовательно связанных каталитических реакторов, в которых осуществляют специальный контроль добавляемого кислорода.
Наверх