Пробирки в стрипе

Изобретение относится к лабораторной посуде, в частности к пластмассовым микропробиркам в стрипах, и может быть использовано для проведения многоступенчатых биохимических анализов с использованием катализаторных элементов термоциклирования, в том числе анализов ПЦР с использованием амплификатора. Стрип с пробирками изготовлен методом литья и состоит из ряда последовательно соединенных пробирок, каждая пробирка содержит корпус и крышку, соединенную с корпусом посредством гибкой перемычки; корпус открыт с одной стороны и выполнен цилиндрической формы, переходящей в коническую, сужающейся ко дну корпуса, причем толщина конической стенки корпуса составляет 0,25 мм, при этом пробирки связаны соединительными перемычками, а отношение толщины дна к толщине конической стенки корпуса составляет 2÷3; крышка содержит кольцеобразный элемент, выполненный с возможностью вхождения в корпус пробирки с открытой стороны с натягом при закрытии пробирки крышкой. Технический результат заключается в повышении эксплуатационных характеристик пробирок в стрипе за счет существенного ускорения анализов, повышения надежности проведения анализов и точности результатов анализа, в том числе методом ПЦР, повышения прочности пробирок в стрипе, а также удобства в эксплуатации. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к лабораторной посуде, в частности к пластмассовым микропробиркам в стрипах, и может быть использовано для проведения многоступенчатых биохимических анализов с использованием катализаторных элементов термоциклирования, в том числе анализов ПЦР с использованием амплификатора.

Из уровня техники известны пробирки в стрипах (патент CN102925342). Пробирки в стрипе соединены между собой перемычками. К пробиркам прикреплены крышки, при этом количество крышек в стрипе соответствует количеству пробирок. При установке крышек в пробирки направляющая втулка крышки входит в горлышко пробирки с натягом.

Недостатком известного изделия является низкая скорость проведения реакций термоциклирования.

Технической проблемой, на решение которой направлено заявленное изобретение, является устранение указанных недостатков, повышение удобства использования в амплификаторе при проведении анализа по методу ПЦР при работе с большим количеством образцов, что позволяет ускорить процесс установки пробирок в термоблок.

Техническим результатом заявленного изобретения является повышение эксплуатационных характеристик пробирок в стрипе за счет существенного ускорения анализов, повышения надежности проведения анализов и точности результатов анализа, в том числе методом ПЦР, повышения прочности пробирок в стрипе, а также удобства в эксплуатации.

Технический результат достигается за счет использования пробирок в стрипах, изготовленных методом литья и состоящих из ряда последовательно соединенных пробирок, каждая пробирка содержит корпус и крышку, соединенную с корпусом посредством гибкой перемычки; корпус открыт с одной стороны и выполнен цилиндрической формы, переходящей в коническую, сужающейся ко дну корпуса (закрытому концу), причем толщина конической стенки корпуса составляет 0,25 мм, при этом пробирки связаны между собой соединительными перемычками; отношение толщины дна к толщине конической стенки корпуса составляет 2÷3; крышка содержит кольцеобразный элемент, выполненный с возможностью вхождения в корпус пробирки с открытой стороны с натягом при закрытии пробирки крышкой.

Вверху цилиндрической части корпуса (часть корпуса у открытой стороны, выполненной цилиндрической формы) может быть выполнено уплотнительное кольцо с кольцевой канавкой по его окружности, а на крышке может иметься кольцеобразный элемент с кольцевым буртиком, для вхождения в уплотнительное кольцо в отверстии корпуса с натягом и защелкивания крышки в корпусе пробирки при размещении буртика в канавке.

Крышка может быть выполнена с козырьком.

Изготовление пробирок в стрипах существенно упрощают и ускоряют процесс проведения анализа в амплификаторе при необходимости анализа большого количества проб.

Пробирки могут быть выполнены из полимерного материала, например, из полиэтилена или полипропилена бесцветными (прозрачными) для упрощения визуального осмотра или в белом цвете для увеличения флуоресцентного сигнала, или в цветном исполнении для легкой идентификации проб, что дополнительно упрощает процесс анализа, повышает его надежность и точность и, как следствие, приводит к повышению эксплуатационных характеристик пробирок в стрипе.

Гибкая перемычка может быть выполнена с отверстиями, что приводит при открывании/закрывании к смягчению и ослаблению упругости и жесткости гибкой перемычки до оптимального значения, обеспечивая достаточную эластичность перемычки при сохранении упругости и жесткости, что дополнительно способствует упрощению и ускорению процесса открывания/закрывания крышки, также повышаются эксплуатационные характеристики пробирки.

Соединительные перемычки, связывающие пробирки в стрипе между собой выполнены с симметричными отверстиями для упрощения их разъединения при необходимости.

Выполнение внутреннего края крышки с козырьком смягчает взаимодействие пальца с крышкой, что упрощает и ускоряет процесс открывания/закрывания крышки, что дополнительно улучшает эксплуатационные характеристики изобретения.

Стенки корпуса пробирки выполнены очень тонкими, с толщиной 0,25 мм. Эта толщина является оптимальной, что позволяет достичь существенного ускорения проведения анализа по методу ПЦР (длительность анализа составляет 1,5 минуты) за счет обеспечения равномерного, оптимального и быстрого теплопереноса при сохранении необходимых прочностных характеристик пробирки, что приводит к достижению надежности пробирки в процессе эксплуатации и, как следствие, к высокой надежности выполнения анализа и точности результатов. В результате обеспечивается повышение эксплуатационных характеристик.

Изготовление пробирок с очень тонкой стенкой (например, 0,25 мм) является технологически сложной задачей, при этом, уменьшение толщины стенок в процессе производства ведет к потере их жесткости (к потере жесткости каркаса пробирок). Кроме того, уменьшение толщины стенок пробирок до 0,25 мм также может приводить к нарушению их целостности и, как следствие, к потере герметичности пробирок при закрытии их крышками. В результате существенно снижается точность результатов анализа.

Изготовление стрипов с пробирками методом литья позволяет существенно повысить точность изготовления элементов стрипов и пробирок в них. Таким образом, элементы пробирок получают с заданными размерами с высокой точностью, в результате чего внутренний диаметр открытой части пробирок соотносится с внешним диаметром кольцеобразного элемента крышек с высокой точностью и кольцеобразный элемент крышки очень плотно, с натягом, входит в пробирку с открытой стороны при закрытии пробирки крышкой. Таким образом, элементы выполняются плотно примыкающими друг к другу. Все это позволяет значительно повысить герметичность закрытых крышками пробирок, снизить испарение их содержимого в процессе термоциклирования, что приводит к повышению точности результатов анализа.

Как было указано выше, получение пробирок с максимально тонкой стенкой (0,25 мм) – задача технически сложная. Для получения конической части с толщиной стенки 0,25 мм с сохранением жесткости, прочности стенки, ее целостности и герметичности при закрытии крышкой, стрип с пробирками изготавливают методом литья, в процессе которого формируют дно и коническую стенку пробирок таким образом, чтобы отношение толщины дна к толщине конической стенки корпуса составляло 2÷3.

Выполнение корпуса с отношением толщины дна к толщине конической стенки корпуса - 2÷3 является важным условием. При таком соотношении обеспечивается целостность дна при отрыве литниковой части в процессе производства стрипа пробирок при сохранении минимальной толщины стенок конической части. Таким образом достигается герметичность дна и корпуса пробирки в целом, что приводит к повышению надежности проведения анализов при их высокой скорости и, следовательно, к повышению эксплуатационных характеристик. При несоблюдении данного соотношения нарушается целостность дна пробирки или утолщение стенки.

Наличие на внутренней стороне цилиндрической части корпуса уплотнительного пояса с кольцевой канавкой, выполненной по окружности пояса, и кольцевого буртика на кольцеобразном элементе крышки, позволяет при закрытии крышки осуществлять посадку кольцеобразного элемента в уплотнительное кольцо с натягом и герметично защелкнуть крышку на корпусе пробирки. Это позволяет достичь надежного прочного закрытия пробирки крышкой, в результате чего исключается внезапное открытие крышки или значительное испарение содержимого пробирки в процессе анализа ПЦР а, следовательно, повышается точность и надежность результатов анализа, что приводит к дополнительному повышению эксплуатационных характеристик стрипа с пробирками.

Выполнение пробирки в соединении с крышкой упрощает процесс эксплуатации (и проведения анализа), поскольку крышка всегда находится у пробирки, и при необходимости закрытия пробирки данная процедура ускоряется, также исключается риск падения крышки на пол при неудачной попытке закрытия пробирки, что существенно повышает эксплуатационные характеристики изобретения.

Изобретение поясняется фигурами 1-4.

На фиг. 1 представлены пробирки в стрипе, вид 3/4.

На фиг. 2 представлены пробирки в стрипе, вид сверху.

На фиг. 3 представлен вертикальный разрез пробирки из стрипа.

На фиг. 4 представлен фрагмент разреза пробирки, закрытой крышкой, демонстрирующий фиксацию крышки в пробирке за счет буртика и канавки.

На фигурах позициями 1-13 показаны:

1 - микропробирка (пробирка),

2 - цилиндрическая часть корпуса,

3 - коническая часть корпуса,

4 - крышка,

5 - кольцеобразный элемент,

6 - гибкая перемычка,

7 - закрытый конец (дно) корпуса,

8 - уплотнительное кольцо (пояс),

9 - соединительная перемычка,

10 - отверстия в соединительной перемычке,

11 - козырек,

12 - канавка,

13 - буртик.

Пример реализации изобретения

Стрип, изображенный на фиг. 1 и 2, содержит 8 микропробирок объемом 0,2 мл для анализа ПЦР. Каждая микропробирка 1 (фиг. 3) содержит корпус, имеющий цилиндрическую часть 2, переходящую в коническую часть корпуса 3, суженную к закрытому концу (дну) 7. Корпус пробирок имеет ультратонкие, равномерные по толщине стенки. Толщина стенки корпуса пробирок в конической части составляет 0,25 мм. Дно корпуса пробирок выполнен с толщиной 0,7 мм. Таким образом, отношение толщины дна к толщине стенки в конической части составляет К=0,7/0,25=2,8. На внутренней поверхности цилиндрической части, у открытой стороны пробирки, расположен уплотнительный пояс 8 с кольцевой канавкой 12, проходящей по окружности пояса 8. Каждая микропробирка 1 в стрипе имеет соединенную с ней гибкой перемычкой 6 защелкивающейся плоской крышкой 4. Крышка имеет козырек 11. На внутренней стороне крышки 4 выполнен кольцеобразный элемент 5, имеющий кольцевой буртик 13 по краю, выполненный для защелкивания в канавке 12. Внешний диаметр кольцеобразного элемента 5 близок внутреннему диаметру уплотнительного пояса 8, за счет чего кольцеобразный элемент 5 входит в корпус при закрывании крышки с натягом, а за счет буртика 13 крышка 4 защелкивается в канавке 12 внутри корпуса. Микропробирки в стрипе связаны между собой соединительными перемычками 9, имеющими симметричные отверстия 10. Корпус микропробирок выполнен из ультрачистого полипропилена белого цвета и оптимизированного для использования пробирок при проведении ПЦР. Крышки выполнены из оптически прозрачного материала (например, полипилена марки РР4445S). Расстояние между лунками (открытая сторона пробирок) одинаковое и стандартное, что обеспечивает совместимость стрипа с многоканальным дозатором.

Для проведения анализа биологических проб для определения коронавирусной инфекции covid-19 по методу ПЦР, предварительно в стрип из 8 пробирок 1 с помощью многоканального дозатора вносят реагенты и плотно закрывают пробирки 1 крышками 4, при этом кольцеобразный элемент 5 крышки 4 входит в корпус при закрывании крышки с натягом, а буртик 13 входит в канавку 12 на уплотнительном поясе 8 и крышка 4 защелкивается на корпусе пробирки 1. Возможность плотного закрытия пробирок крышками значительно снижает риск перекрестной контаминации между пробами, в результате открытия крышек, обусловленного повышением давления паров в пробирке при термоцикливовании, что существенно повышает точность результатов анализа.

Далее стрип устанавливают в реакционный блок амплификатора, в котором осуществляют ПЦР.

Поскольку корпус был выполнен из полипропилена белого цвета, а крышки – из оптически прозрачного материала, то при проведении ПЦР детектировали флуоресценцию.

Процесс ПЦР предполагает цикличное нагревание пробы. При этом выполнение пробирок с толщиной стенок в конической части 0,25 мм оказалось оптимальным, что позволило существенно сократить время проведения анализа до 1,5 минут, с учетом того, что при использовании известных стрипов с пробирками с более толстыми стенками пробирок требуется длительное временя анализа – 30-35 минут. Равномерные, ультратонкие стенки с толщиной 0,25 мм обеспечили равномерный и оптимальный теплоперенос, одинаковый для каждого образца.

Экспериментально было установлено, что испарение реагентов в процессе ПЦР составило не более 3%, что существенно повысило точность исследования.

1. Пробирки в стрипах, характеризующиеся тем, что стрип изготовлен методом литья и состоит из ряда последовательно соединенных пробирок, каждая пробирка содержит корпус и крышку, соединенную с корпусом посредством гибкой перемычки; корпус открыт с одной стороны и выполнен цилиндрической формы, переходящей в коническую, сужающейся ко дну корпуса, причем толщина конической стенки корпуса составляет 0,25 мм, при этом пробирки связаны соединительными перемычками, а отношение толщины дна к толщине конической стенки корпуса составляет 2 к 3; крышка содержит кольцеобразный элемент, выполненный с возможностью вхождения в корпус пробирки с открытой стороны с натягом при закрытии пробирки крышкой.

2. Пробирки в стрипах по п.1, характеризующиеся тем, что вверху цилиндрической части корпуса выполнено уплотнительное кольцо с кольцевой канавкой по его окружности, на крышке имеется кольцеобразный элемент с кольцевым буртиком для вхождения в уплотнительное кольцо в отверстии корпуса с натягом и защелкивания крышки в корпусе пробирки при размещении буртика в канавке.

3. Пробирки в стрипах по п.1, характеризующиеся тем, что крышка выполнена с козырьком.



 

Похожие патенты:

Группа изобретений относится к способам и жидкостной системе для увеличения количества ампликонов в клональных популяциях ампликонов на сайтах амплификации. Проводят реакцию первого раствора и отличающегося от него второго раствора на проточной ячейке в жидкостной системе посредством протекания первого раствора по сайтам амплификации, находящимся на проточной ячейке, и затем посредством протекания второго раствора по сайтам амплификации.

Изобретение относится к микрофлюидному устройству и способу его использования для разделения, очистки и концентрации компонентов текучих сред. Микрофлюидное устройство для разделения, очистки и концентрации компонентов текучих сред, содержащее: структурированный компонент (1), образованный в виде плоского корпуса; микрофлюидную систему (2) каналов, образованную в структурированном компоненте (1); по меньшей мере один конструктивный элемент, выбранный из пластины или пленки, нанесенный на верхнюю сторону и/или нижнюю сторону структурированного компонента (1) для закрытия микрофлюидной системы (2) каналов с уплотнением; по меньшей мере один пористый функциональный элемент (5), выбранный из фильтра, мембраны, фритты или функциональной бумаги, и по меньшей мере один порт (4.1, 4.2, 4.3) для текучей среды, расположенный в структурированном компоненте (1), для подачи сред в микрофлюидную систему (2) каналов и реагенты и/или сухие реагенты, обеспеченные по меньшей мере в одной реакционной камере (6) и/или по меньшей мере в одной камере (20) для реакции ПЦР.

Изобретение предназначено для микроструйной техники. Материал для управления объемами жидкости включает в себя пористую подложку, содержащую первую и вторую поверхности, и управляющую жидкостью структуру, расположенную на первой поверхности, причем структура содержит первый резервуар, соединенный с целевой точкой посредством первого клиновидного элемента переноса для того, чтобы обеспечить перенос жидкости от целевой точки к первому резервуару независимо от гравитации.

Изобретение относится к биологическому или химическому анализу, а именно к системам и способам, использующим устройства детектирования для биологического или химического анализа. Устройство для определения нуклеотидных оснований в последовательности нуклеиновой кислоты содержит биодатчик и приемник, выполненный с возможностью удержания биодатчика, причем биодатчик имеет поверхность для образцов, содержащую области пикселей и содержащую множество кластеров в процессе последовательности событий анализа образцов так, что кластеры распределены неравномерно по областям пикселей, матрицу датчиков, причем каждый датчик в матрице выполнен с возможностью считывания информации из одного или более кластеров, расположенных в соответствующих областях пикселей поверхности для образцов, для формирования сигнала пикселя в событии анализа образца, причем матрица выполнена с возможностью формирования множества последовательностей сигналов пикселей, матрица имеет N активных датчиков, датчики в матрице расположены относительно поверхности для образцов, чтобы формировать соответствующие сигналы пикселей в процессе последовательности событий анализа образцов из N соответствующих областей пикселей поверхности для образцов для создания множества последовательностей сигналов пикселей, и порт связи, выполненный с возможностью вывода множества последовательностей сигналов пикселей; и процессор сигналов, соединенный с приемником и выполненный с возможностью исполнения анализа временной последовательности и пространства множества последовательностей сигналов пикселей для обнаружения схем освещения соответствующих N+М отдельных кластеров на поверхности для образцов от N активных датчиков, где М является положительным целым числом, и классификации результатов последовательности событий анализа образца для N+М отдельных кластеров и выполненный с возможностью использования множества последовательностей сигналов пикселей, снятых с группы областей пикселей, по которым неравномерно распределены по меньшей мере два кластера, для определения пространственных характеристик этих по меньшей мере двух кластеров, в том числе местоположения указанных по меньшей мере двух кластеров на поверхности для образцов, причем множество последовательностей сигналов пикселей кодирует дифференциальные помехи между по меньшей мере двумя кластерами, являющиеся результатом их неравномерного распределения по группам областей пикселей.

Изобретение относится к диагностике in vitro. Раскрыто применение способа для диагностики in vitro, где указанный способ включает: обеспечение кассеты, имеющей множество рабочих объемов; перенос растворов текучих сред по меньшей мере из одного из указанного множества рабочих объемов по меньшей мере в один другой из указанного множества рабочих объемов, где указанный перенос растворов текучих сред включает линейное перемещение переносящего элемента, с последовательным обеспечением сообщения с внутренними пространствами указанных по меньшей мере некоторых из указанного множества рабочих объемов; и вентиляцию указанного по меньшей мере одного из указанного множества рабочих объемов, где указанное множество рабочих объемов включает по меньшей мере первый рабочий объем и второй рабочий объем, где указанный перенос растворов текучих сред предусматривает: расположение разрушающего клеточную мембрану материала в первом рабочем объеме; расположение открытого конца полой иглы с введением в сообщение с указанным первым рабочим объемом; всасывание, по меньшей мере, некоторой порции указанного разрушающего клеточную мембрану материала в указанную полую иглу; линейное перемещение указанного открытого конца указанной полой иглы с введением в сообщение со вторым рабочим объемом, имеющим заключенную в нем пробу; и осуществляемое неоднократно всасывание указанной пробы и по меньшей мере части указанного разрушающего клеточную мембрану материала в указанную полую иглу; и исторжение указанной пробы и по меньшей мере части указанного разрушающего клеточную мембрану материала из указанной полой иглы в указанный второй рабочий объем, тем самым смешивая указанную пробу и указанный разрушающий клеточную мембрану материал.

Изобретение относится к системам и способу спектрального анализа. Разработан планшет для размещения образцов для инфракрасного спектрального анализа, содержащий: подложку, образующую множество лунок, углубленных относительно ее поверхности, причем каждая из лунок образует участок образца, углубленный на глубину образца от указанной поверхности, и участок желоба, углубленный на глубину желоба от указанной поверхности, причем глубина желоба больше, чем глубина образца, и при этом глубина образца составляет 0,004-0,012 мм ± 0,002 мм; и где подложка изготовлена из материала, который по существу не вступает в реакцию с эталонным образцом и/или образцом, находящимся в лунках, и при этом подложка пропускает электромагнитное излучение.

Изобретение относится к области медицины и лабораторной диагностики, а именно к устройству для диагностики жидкостей организма, содержащему: a) верхний корпус, включающий верхнюю главную камеру для сбора текучей среды, и временную камеру, связанную свободным потоком с верхней главной камерой до начала этапа диагностики; b) нижний корпус, включающий диагностическую камеру, содержащую по меньшей мере одну диагностическую тест-полоску, выполненную с возможностью вступать в реакцию с веществом или составом жидкости организма, при этом верхний корпус выполнен с возможностью вертикального скольжения в сторону вышеупомянутого нижнего корпуса для начала этапа диагностики; и c) клапан для закупоривания соединения по текучей среде между временной камерой и диагностической камерой до начала этапа диагностики, и между временной камерой и верхней главной камерой, когда начинается этап диагностики; при этом нижний корпус дополнительно содержит нижнюю камеру, расположенную под диагностической камерой, и скорость потока между диагностической камерой и нижней камерой регулируется посредством регулятора потока, который представляет собой отверстие или проход и пригоден для ограничения времени распределения жидкости по всей длине диагностической тест-полоски до периода времени, не превышающего 7 секунд.

Изобретение относится к приспособлениям для хранения и подготовки образцов для спектроскопических процедур. Контейнер (112) для определения химического состава образца целиком размещен внутри оптической интегрирующей камеры (110), содержит ограничивающий элемент, выполненный из фторуглеродного пластика; причем ограничивающий элемент обладает коэффициентом диффузного пропускания по меньшей мере 80% и содержит экранирующую перегородку, представляющую собой дефлектор или рассеивающий элемент, имеющий коэффициент диффузного пропускания менее 20%; при этом контейнер (112) для образца выполнен с возможностью размещения твердого или жидкого образца, причем контейнер для образца не встроен в стенку интегрирующей камеры и не установлен в качестве части стенки интегрирующей камеры.

Изобретение относится к микрофлюидным устройствам, а именно к системе управления реагентами. Прибор для управляемых химических реакций с модулем гибкого соединения содержит систему управления реагентами, выполненную с возможностью расположения в указанном приборе, при этом система управления реагентами содержит множество лунок для реагентов, при этом каждая лунка для реагента выполнена с возможностью вмещения реагента из множества размещенных в системе реагентов, при этом система управления реагентами выполнена с возможностью выбора потока реагента из одной из множества лунок для реагентов; модуль детектирования; и модуль гибкого соединения, содержащий: гибкое соединение, состоящее из многослойного пакета и выполненное с возможностью расположения в приборе, при этом гибкое соединение содержит первый гибкий канал, связанный по текучей среде с системой управления реагентами, при этом первый гибкий канал выполнен с возможностью направления по нему потока реагента; и проточную ячейку, выполненную с возможностью расположения в приборе, при этом проточная ячейка содержит проточный канал, связанный по текучей среде с первым гибким каналом, при этом проточный канал выполнен с возможностью направления потока реагента поверх аналитов, расположенных в проточном канале; причем проточная ячейка выполнена с возможностью перемещения прибором относительно фиксированной базовой точки в приборе, будучи при этом соединенной с гибким соединением.

Изобретение относится к процессорам для проведения реакций типа полимеразной цепной реакции. Заявлен процессор 30 для проведения реакции, снабженный сосудом 10 для проведения реакции, в котором сформирован канал 12, система 37 подачи текучей среды, система 32 управления температурой для обеспечения в канале 12 высокотемпературной области и низкотемпературной области и флуоресцентный детектор 50 для обнаружения образца 20, проходящего через область обнаружения флуоресценции в канале 12, и центральный процессор 36 для управления системой 37 подачи текучей среды, основываясь на обнаруженном сигнале.

Данное изобретение касается разделительного элемента для отделения первой фазы жидкости, в частности сыворотки крови, от второй фазы жидкости, в частности сгустка крови, в трубкообразной емкости, например, трубки для забора крови. Разделительный элемент (100) содержит изготовленное из упругого материала плавучее тело (110), по меньшей мере один закрепленный на нижней стороне плавучего тела (110) балластный элемент (120).
Наверх