Способ определения начала образования жидкостных или гидратных пробок в газосборной промысловой сети

Способ относится к системам автоматического контроля нефтегазового оборудования и позволяет своевременно обнаруживать предаварийные ситуации, связанные с образованием водо-льдо-пробок и отложением гидратов в газовом оборудовании. В способе периодически измеряют температуру и расход газа через газовое оборудование или перепад давления газа на замерном сужающем устройстве, находящемся в потоке газа. По измеренным значениям формируют показатель критического состояния оборудования. Для определения временного интервала наступления критического состояния оборудования используются статистические данные остановки шлейфа газосборной сети промысла. 2 з.п. ф-лы, 1 ил.

 

Способ определения начала образования жидкостных или гидратных пробок в газосборной промысловой сети относится к способам или устройствам для добычи и подготовки природного газа, предназначено для оперативного контроля начала образования водо-ледяных пробок и отложением гидратов в газовом оборудовании и может быть использовано в нефтяной и газовой промышленности. Образование водо-ледяных пробок и отложения гидратов в газосборной сети приводит к авариям и является одной из основных причин останова его части. Так, основной причиной останова и продувки газовых шлейфов являются образование ледяных и гидратных пробок.

В настоящее время многие предприятия сталкиваются с проблемами в поиске технических решений, обеспечивающих снижение степени образования жидкостных, ледяных и гидратных пробок в системах внутрипромыслового сбора газа, при условии низкой капиталоемкости, минимальных эксплуатационных затратах, простоты реализации и гибкости применения. Существует множество технических решений для оперативного контроля гидратов в газовом оборудовании, однако данная проблема до сих пор полностью не решена.

В настоящее время авторами публикаций и патентов в качестве гарантированного определения состояния оборудования использования параметра расхода газа признается факт его непригодности в анализе, поскольку поток в газопровод шлейфе не регулируемый, а массовый расход постоянный, именно по данной причине прототипов изобретения не зарегистрировано. Так же отмечается, что возможны ложные определения гидратообразования при изменении технологического режима, регулирования дебита скважин и т.п. Именно такая сложная и неординарная задача представляется интересной к решению, имеющая до сих пор актуальное значение.

Целью изобретения является создание технического решения, позволяющего по периодически измеряемым технологическим параметрам оперативно обнаруживать предаварийные ситуаций, связанные с образованием водо-ледяных пробок и отложения гидратов в газовом оборудовании и оценить время до его останова, через которое проходит поток газа.

Изобретение обеспечивает достижение следующего технического результата:

- учет влияния основных измеряемых технологических параметров, связанных с возникновением пробок в газовом оборудовании;

- использование существующих датчиков оперативного измерения технологических параметров вместо создания специальных устройств и контроль корректности их работы;

- оценку времени до останова газового оборудования;

- независимость оценки степени загидрачивания от процесса регулирования расхода газа через газовое оборудование;

- возможность оперативной оценки изменения состояния работы газового оборудования.

Заявленный способ определения начала образования жидкостных или гидратных пробок в газосборной сети для контроля своевременного обнаружения предаварийных ситуаций, связанных с образованием водо-льдо-пробок и отложением гидратов в газовом оборудовании основан на периодическом измерении температуры и расхода газа через газовое оборудование или перепада давления газа на замерном сужающем устройстве, находящемся в потоке газа. По измеренным значениям формируют показатель критического состояния оборудования, для определения временного интервала наступления критического состояния газового оборудования используются статистические данные остановки шлейфа газосборной сети промысла, после чего опытным путем выясняется время до снижения минимально-измеряемого расхода газо-жидкостной смеси и полной остановки газосборного шлейфа.

Новизна заключается в том, что по измеренным значениям указанных технологических параметров формируют показатели о вероятном начале не оптимального или не благоприятного режима работы газового оборудования и по степени отклонения текущего значения этого показателя от базового, определенного при заведомо аварийном режиме работы, судят о степени оптимальности работы газового оборудования.

В основу заявленного способа контроля оптимальности работы работающего газового оборудования положены данные производственного портала ООО «ГАЗПРОМ добыча Ямбург». С целью выявления характерных точек при снижении параметра «Расход газа на входе в ЗПА» газопровод шлейфа до не измеряемого, произошедшее в период плановой остановки одного из нескольких межпромысловых коллекторов, которое сопровождалось повышением давления на выходе промысла (не оптимально выбранный режим работы газопровод шлейфа) и снижением количества подаваемого ингибитора (сезонное уменьшение норм подачи метанола), как к «черному ящику», с целью определения характерных точек предшествующих остановке оборудования фиг.1.

Изобретением предлагается применить статистический метод анализа ПИК-фактор, получивший широкое распространение в технической диагностике машин и механизмов, к измеряемому параметру «Расход газа на входе в ЗПА», что позволяет получить с достаточной долей вероятности данные о начале негативных процессов в газопровод шлейфе. За это время определяется ПИК-фактор по параметру расхода ГЖС (газожидкостной смеси) в среднем по 41-ой точке сформированного массива (период один час), для этого использованы следующие диагностические параметры: ПИК – максимальное значение сигнала на рассматриваемом интервале времени; СКЗ – среднеквадратичное значение; ПИК-фактор – отношение параметра ПИК к СКЗ

Приближение линий СКЗ и отношения ПИК к СКЗ, в случае непринятия мер к предупреждению, сигнализируют, о, вероятном, начале не оптимального режима работы примерно за 10-2 часов (т.1, фиг.1), условие (1)

(1)

а приближение линий ПИК и отношения ПИК к СКЗ, характеризуют, не благоприятный режим работы газопровод шлейфа примерно за 1-1.30 час (т.2, фиг.1), условие (2)

(2)

до снижения минимально-измеряемого расхода газожидкостной смеси и полной остановки газопровод шлейфа.

Неравенства (1,2) были получены из графической интерпретации данных фиг.1 газопровод шлейфа обще-коллекторной схемы сбора газа длиной 12.5 км, равной критической скорости движения, производительностью 0.45 млн.м3/сут и перепаде давлений между входа в шлейф и установки подготовки газа 0.41 МПа. Работоспособность алгоритма проверена на газопровод шлейфах коллекторно-лучевой схемы сбора газа длиной от 4.8 до 16.5 км, менее, равной и более критической скорости движения, производительностью от 0.20 до 0.57 млн.м3/сут и перепаде давлений между входа в шлейф и установки подготовки газа от 0.27 до 0.63 МПа Валанжинской залежи Ямбуржского НГКМ ООО «ГАЗПРОМ добыча Ямбург».

Метод применим на установках, оснащенных замерными устройствами на входе здания переключающей арматуры (ЗПА) и не оборудованными, по ряду различных причин, комплексами телеметрии, и, полностью отвечает требованиям: минимальных материальных затрат при использовании, простоты реализации и гибкости применения.

Предлагаемое техническое решение может быть реализовано в рамках системы управления добычей и подготовкой газа. В частности, в подсистеме управления подачей ингибитора гидратообразования в поток газа, проходящий через газовое оборудование газосборной сети, в котором могут откладываться гидраты либо автоматической системы оперативной диагностики состояния газового оборудования.

Практическая реализация изобретения заключается в следующем.

В режиме реального времени датчиками периодически измеряют расход газа в работающем газовом оборудовании, в котором могут образоваться водо-ледяные пробки или гидраты, температуру газа внутри (в конце) данного газового оборудования. Как вариант, вместо расхода газа через газовое оборудование может использоваться корень квадратный из перепада давления газа на замерном сужающем устройстве, находящемся в потоке газа, проходящем через газовое оборудование.

По измеренным значениям указанных параметров по формуле (1) и (2) также в режиме реального времени и также периодически вычисляют значение оптимальности работы газового оборудования. При заведомо аварийном режиме работы газового оборудования (например, не оптимально подобранном технологическом режиме работы или в отсутствии ввода ингибитора гидратообразования) определяют характерные точки в качестве базовых. По мере работы газового оборудования могут возникать ситуации сопровождающиеся общеизвестными проявлениями: образование в газопровод шлейфе водо- и льдо-проявлений, гидратных пробок, как правило дросселируется, создаёт изменение потока газожидкостной смеси, сопровождающееся пульсациями давления, при этом параметр «Расход газа на входе в ЗПА» характеризует изменение линейной скорости газа в газопровод шлейфе в условиях потока (температуры и давления), в дальнейшем, при понижении температуры газа в шлейфе до определенной температуры начинается процесс гидратообразования, отложение гидратов на стенках шлейфа и уменьшении его внутреннего диаметра (облитерация), а вследствие возникновения дроссель-эффекта дальнейшее падение фактической температуры газа (при недостаточной подаче ингибитора вплоть до образования ледяных пробок).

Таким образом, значение оптимальности работы газового оборудования может использоваться для оперативного контроля степени загидрачивания газового оборудования и оценки косвенного его показателя технического состояния.

1. Способ определения начала образования жидкостных или гидратных пробок в газосборной сети для контроля своевременного обнаружения предаварийных ситуаций, связанных с образованием водо-льдо-пробок и отложением гидратов в газовом оборудовании, основанный на периодическом измерении температуры и расхода газа через газовое оборудование или перепада давления газа на замерном сужающем устройстве, находящемся в потоке газа, по измеренным значениям формируют показатель критического состояния оборудования, для определения временного интервала наступления критического состояния газового оборудования используются статистические данные остановки шлейфа газосборной сети промысла, после чего опытным путем выясняется время до снижения минимально-измеряемого расхода газо-жидкостной смеси и полной остановки газосборного шлейфа.

2. Способ по п. 1, отличающийся тем, что приближение линий СКЗ (среднеквадратичное значение) и отношения ПИК (максимальное значение сигнала) к СКЗ, в случае непринятия мер к предупреждению, сигнализирует о вероятном начале неоптимального режима работы примерно за 10-2 ч.

3. Способ по п. 1, отличающийся тем, что приближение линий ПИК и отношения ПИК к СКЗ характеризует неблагоприятный режим работы примерно за 1-1.30 ч.



 

Похожие патенты:

Изобретение относится к области автоматизированных систем управления технологическими процессами и может использоваться для комплексного мониторинга и диагностики технического состояния трубопроводной арматуры (далее - ТПА) на контролируемых пунктах телемеханики, компрессорных цехах и газоперекачивающих агрегатах.

Изобретение относится к нефтяной промышленности и предназначено для магнитной обработки нефтяного флюида, транспортируемого в системе сбора нефти после автоматизированной групповой замерной установки (АГЗУ). Система включает АГЗУ, связанную трубопроводами с нефтяными скважинами, выход которой через трубопровод, оборудованный задвижкой, соединен с входным патрубком приемного блока, имеющего каналы для прохода нефтяного флюида, который соединен с одной стороны через муфту с электродвигателем, а с другой стороны соединен последовательно с насосным блоком и блоком магнитной обработки.

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту, в частности к автоматическому поддержанию температурного режима технологических процессов установки низкотемпературной сепарации газа в период, когда охлаждение добываемого газа осуществляют турбодетандерными агрегатами в условиях Севера РФ.

Изобретение относится к области добычи и подготовки газа и газового конденсата к дальнему транспорту. Способ включает предварительную очистку добытой газожидкостной смеси от механических примесей, отделение из нее части смеси нестабильного газового конденсата (НГК) и водного раствора ингибитора (ВРИ) в сепараторе первой ступени редуцирования, которые по мере их накопления в нижней части этого сепаратора отводят в разделитель жидкостей (РЖ).

Изобретение относится к области автоматизированных систем управления технологическими процессами транспорта газа и используется для диагностики и контроля разрешенного рабочего давления (далее - РРД), установленного по результатам внутритрубной диагностики, на линейных участках между крановыми площадками магистрального газопровода (далее - МГ).

Описаны устройства, системы и способы обнаружения и предоставления предупреждения касательно наличия жидкостного загрязнения в линии пневматической сети и/или пневматическом приборе. Устройство для обнаружения жидкости, обнаруживающее жидкостное загрязнение в пневматической сети и предоставляющее его индикацию, содержит: корпус; электронный датчик содержания влаги, расположенный в указанном корпусе и выполненный с возможностью соединения с пневматической сетью и обнаружения наличия жидкости в указанной пневматической сети; и устройство беспроводной передачи данных, расположенное в указанном корпусе и выполненное с возможностью передачи данных от электронного датчика содержания влаги в узел передачи данных компьютерной сети предприятия.

Изобретение относится к измерительной технике и может быть применено в устройстве обнаружения мест утечек рабочей среды нагруженных трубопроводов, находящихся в грунте. Особенностью данного способа локализации несанкционированной потери рабочей среды в трубопроводе на основе амплитудно-временного анализа и корреляции виброакустических сигналов является то, что дополнительно размещается третий чувствительный элемент.

Изобретение относится к области внутритрубной диагностики трубопроводов. Способ выявления растущих дефектов магистральных трубопроводов включает определение критерия выявления растущих дефектов, осуществление внутритрубной диагностики магистрального трубопровода путем пропуска внутритрубных инспекционных приборов (ВИП), определение на основании полученной информации величины параметра сигнала от дефекта, соответствующего выбранному для определения критерия выявления растущих дефектов; сопоставление величины параметра сигнала от дефекта с величиной соответствующего параметра сигнала от дефекта предыдущего пропуска ВИП; выявление разницы этих величин; проведение сравнения полученной разницы и критерия выявления растущих дефектов.

Изобретение относится к нефтяной промышленности и может быть использовано на трубопроводах в качестве централизованной системы автоматических защит от превышения давления, обеспечивающей безаварийность технологического процесса транспортировки нефти или нефтепродуктов. Система включает сервер автоматического управления магистрального трубопровода, соединенный посредством объединенной сети с сервером системы диспетчерского контроля и управления, при этом сервер автоматического управления магистрального трубопровода включает в себя модуль хранения набора заранее выбранных режимов работы трубопровода, модуль хранения набора заранее рассчитанных переходов между режимами работы трубопровода, модуль контроля технологического процесса перекачки нефти, модуль автоматического определения готовности технологического оборудования к переходу между режимами, модуль автоматического формирования команд переключения между режимами из модуля хранения набора заранее выбранных режимов работы трубопровода либо из модуля хранения набора заранее рассчитанных переходов между режимами работы трубопровода, модуль автоматического формирования команд аварийной остановки нефтеперекачивающих станций.

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения пространственного положения оси трубопровода вне зависимости от особенностей его прокладки. Способ заключается в том, что на трубопровод с определяемым шагом в проекции на ось трубопровода устанавливаются метки, содержащие датчики пространственной ориентации, определяющие углы поворота в ортогональной системе координат, азимут и высотное положение.

Изобретение относится к газодобывающей промышленности, в частности к способам обработки призабойных зон скважин для повышения дебита низкотемпературных, низкопроницаемых и глинистых (заглинизированных) пластов. Способ заключается в том, что в скважину последовательно закачивают гидрофильный агент - 3-10 вес.
Наверх