Способ термозащиты пожарной переборки и огнезащитная композиция для покрытия плоскостных конструкций

Изобретение относится к способу создания огнезащитного покрытия на поверхности горючих и негорючих материалов. Способ термозащиты пожарных переборок заключается в том, что переборку оснащают по крайней мере с одной стороны многослойным огнезащитным покрытием, отличается тем, что в качестве огнезащитного покрытия используют термоизолирующие плиты, включающие сеть из негорючего материала и порошок из природных минеральных компонентов, объединенные негорючим и не разрушающимся при изгибах и ударах связующим, при этом термоизолирующие плиты, между которыми размещают разделительную негорючую ткань, закрепляют на переборке, а в качестве внешнего покрытия используют жесткий негорючий прокат, покрытый с внешней стороны огнезащитной краской, при этом сеть из негорючего материала выполнена из асбестовых нитей, порошок из природных минеральных компонентов обладает теплоемкостью не менее чем в 5 раз выше, чем теплоемкость листа из жесткого негорючего проката, а теплопроводностью не менее чем в 4 раза ниже, чем у негорючего проката, в качестве жесткого негорючего проката применяют лист из нержавеющей стали. Технический результат - длительность сопротивления тепловому воздействию, снижение трудоемкости организации противопожарной защиты.

 

Изобретение относится к способу создания огнезащитного покрытия на поверхности горючих и негорючих материалов.

Известны способы огнезащиты, осуществляющиеся путем нанесения на поверхность конструкции (материала) изделия специального состава [1-3]. При этом на поверхности образуется слой, обладающий свойствами огнезащитного покрытия.

Огнезащитное действие таких покрытий основано на том, что при определенной температуре, которая ниже температуры воспламенения защищаемого материала или критической температуры металлических конструкций, происходит начало самопроизвольных химических реакций и физических процессов, приводящих к образованию вспененных теплоизолирующих слоев и (или) выделению флегматизирующих и ингибирующих процесс горения продуктов. В результате чего при воздействии источников пламени и тепла снижается интенсивность распространения пламени, увеличивается предел огнестойкости конструкций.

Огнезащитные вспучивающиеся краски (составы) представляют собой достаточно сложные многокомпонентные системы. Сущность этого способа заключаются в том, что работы по нанесению вспучивающихся составов на поверхность стальных конструкций включают следующие технологические операции: подготовку поверхности, приготовление рабочего состава покрытия, нанесение покрытия.

Существенными недостатками этого способа являются, следующие:

- со временем, в зависимости от степени влияния окружающей среды и других отрицательных факторов, защитные покрытия (обработки) теряют свои огнезащитные свойства, то есть подвержены «старению», при этом потеря огнезащитных свойств может проходить без видимых проявлений (внешний вид покрытия практически не изменяется);

- технологический процесс нанесения таких покрытий сложен, трудоемок и длителен по времени: сроки формирования покрытий составляют до 10 суток

- огнезащитный слой не обладает должной стабильностью свойств, как по толщине покрытия, так и по его площади.

- огнезащитные слои обладают низкой стойкостью - в среднем от 0,75 до 1,5 часов при невысоких температурах - 140-200 град. С

Известен способ получения теплоизоляционного и огнестойкого многослойного комбинированного полимерного покрытия [4] (Патент RU, №2352601) Данный способ включает в себя последовательное нанесение на возможно предварительно нагретую поверхность покрывных слоев, сначала жидкокерамического покрытия из полимерной композиции, содержащей связующее, смесь полых микросфер, различающихся между собой размерами в диапазоне от 10 до 500 мкм и насыпной плотностью от 650 до 50 кг/м3 и вспомогательные целевые добавки, затем на полученное покрытие при необходимости наносят один или несколько слоев из стеклохолста и далее наносят один или несколько слоев полимерной вспучивающейся огнестойкой композиции с добавками, обеспечивающими получение вспучивающегося покрытия, и далее осуществляют окончательную сушку покрытия. Однако получаемое покрытие имеет сложную конструкцию. Причем полые микросферы данного покрытия используются в качестве теплоизоляционного материала, а сама конструкция микросферы не приспособлена к размещению в ее ядре вещества, способного при нагревании значительно расширяться в объеме. Огнестойкость покрытия обеспечивается до 3 часов, что несколько выше, нежели в предыдущих случаях, а перепад температур при испытаниях с нагревом составляет с 405 до 87 град. С на наружнем слое покрытия.

Развитием данного метода является применение в покрытиях сложных материалов, содержащих микрокапсулы с огнегасящим составом (водой, в частности)

Известен огнегасящий полимерный композиционный материал (ОГПКМ) [5] (Реактивный композиционный материал для систем подавления возгораний. Патент RU №2161520). Материал является не только пассивным трудно сгораемым, но и реактивным, который реагирует на повышение температуры или огневое воздействие немедленным (безинерционным) выбросом в окружающую среду мощного газифицированного ог-негасителя, что приводит к быстрому (обычно за несколько десятков секунд) подавлению возгорания. ОГПКМ представляет собой полимерную матрицу, наполненную микрокапсулами, содержащими жидкий высокоэффективный огнегаситель. Регулированием состава матрицы и огнегасителя можно управлять температурой активной реакции ОГПКМ на внешнее воздействие в диапазоне температур от 160°С до 230°С.

Однако, главным недостатком этого материала является то, что только при синхронизации процесса взрывного разрушения микрокапсул, сопровождающегося интенсивным выбросом паров пожаротушащего агента, и его достаточности для разрушения полимерной матрицы при повышении температуры за счет огневого воздействия (непосредственно или дистанционно), может быть достигнут эффект мощного выброса пожаротушащего агента в окружающую среду и соответственно подавление возникшего процесса горения.

Если, в условиях огневого воздействия на ОГПКМ, полимерная матрица расплавится, то будет потерян эффект "взрывного" разрушения материала и единовременного выброса паров пожаротушащего агента в зону пожара, а если матрица слишком термостойка, то она (матрица) длительное время будет препятствовать интенсивному выбросу пожаротушащего агента и пожар успеет настолько развиться, что суммарное количество огнетушащего вещества окажется недостаточным для эффективного тушения.

Другой недостаток данного способа заключается в том, что тепловое воздействие на объект может быть длительным, а количество огнегасящих веществ конечно, что приводит только к замедлению процесса теплового воздействия на защищаемый объект.

Таким образом, из приведенных выше аналогов видно, что данные способы осуществления огнезащитных покрытий лишь замедляют, на то или иное время, тепловое воздействие на объект.

В качестве прототипа выбран способ получения огнезащитного покрытия на поверхности горючих и негорючих материалов, микрокапсулированный агент для создания огнезащитного покрытия на поверхности горючих и негорючих материалов, способ его получения и способ создания огнезащитного вспучивающегося покрытия [6].

В данном способе получения огнезащитного покрытия на поверхности горючих и негорючих материалов, включающем подготовку поверхности, нанесение на нее первого слоя покрытия, нанесение на него второго слоя покрытия, содержащего вспучивающееся вещество, и сушку покрытия, причем второй слой огнезащитного покрытия наносят в виде матрицы, содержащей микрокапсулированный агент, оболочка которого заполнена вспучивающимся веществом, непосредственно на первый слой покрытия перед сушкой, а сушку покрытия производят при температуре ниже порога, при котором во вспучивающемся веществе, заключенном в ядре микрокапсулы, происходит начало самопроизвольных химических реакций и физических процессов, приводящих к вспучиванию вещества;

микрокапсулированный агент для создания огнезащитного покрытия на поверхности горючих и негорючих материалов, представляющий собой микрокапсулы, оболочка которых выполнена термически разрушаемой, и в обычных условиях изолирует ядро от внешней среды, заполнена вспучивающимся веществом, обладающим при нагревании свойствами значительного увеличения в объеме с образованием газо- и парообразных веществ, разрушающим оболочку изнутри при ее нагреве;

способ получения микрокапсулированного агента для создания огнезащитного покрытия на поверхности горючих и негорючих материалов, включает формирование микрокапсулы, содержащей однослойную сферическую полимерную термически разрушаемую оболочку, и ядро, заполненное вспучивающимся веществом - краской или порошком, обладающим при нагревании свойствами значительного увеличения в объеме с образованием газо- и парообразных веществ, разрушающим оболочку изнутри при ее нагреве;

способ создания огнезащитного вспучивающегося покрытия, реализуемый посредством одновременного нагрева оболочки микрокапсулы и заключенного в ее ядре вещества с последующим разрушением оболочки микрокапсулы, при чем покрытие создают за счет объемного расширения заключенного в ядре микрокапсулы вспучивающегося вещества, при его нагреве до температуры, при которой происходит начало самопроизвольных химических реакций и физических процессов, и разрушения оболочки микрокапсулы изнутри, с равномерным распределением на поверхности вспучивающегося вещества - краски или порошка.

Как и предыдущие аналоги, прототип имеет те же недостатки - недостаточное время защиты от тепловых воздействий, неравномерность характеристик поверхности, снижение огнезащитных параметров покрытия во времени, значительная технологическая сложность и трудоемкость формирования покрытия.

Однако в области защиты автономных средств техники остро стоит задача увеличения времени защитного действия покрытия с целью локализации источников возгорания, защиты экипажа и минимизации последствий возгорания.

В основу изобретения поставлена задача увеличения времени сопротивления тепловому воздействию, упрощения формирования защитного поверхностного слоя, производства огнезащитных панелей на промышленной основе.

Технический результат - длительность сопротивления тепловому воздействию, снижение трудоемкости организации противопожарной защиты обеспечивается тем, что:

- переборку оснащают по крайней мере, с одной стороны многослойным огнезащитным покрытием, отличающимся тем, что в качестве огнезащитного покрытия используют термоизолирующие плиты, включающие сеть из негорючего материала и порошок из природных минеральных компонентов, объединенные негорючим и не разрушающимся при изгибах и ударах связующим, при этом термоизолирующие плиты, между которыми размещают разделительную негорючую ткань, закрепляют на переборке, а в качестве внешнего покрытия используют жесткий негорючий прокат, покрытый с внешней стороны огнезащитной краской;

- сеть из негорючего материала выполнена из асбестовых нитей;

- порошок из природных минеральных компонентов обладает теплоемкостью не менее, чем в 5 раз выше, чем теплоемкость листа из жесткого негорючего проката, а теплопроводностью, не менее, чем в 4 раза ниже чем у негорючего проката;

- в качестве жесткого негорючего проката применяют лист из нержавеющей стали;

Ниже приведены примеры конкретной реализации.

Пример 1. При воздействии одинакового потока тепла от газовой горелки на стальной лист с чистой поверхностью и стальной лист, покрытый заявляемым способом со стороны, противоположной тепловому потоку в первом случае, после 2-х минут воздействия температура поверхности чистого листа с противоположной стороны от газовой горелки составила 368 градусов Цельсия, а температура поверхности листа, покрытого заявляемым способом - 54 градуса Цельсия.

Пример 2 При имитации внезапного и кратковременного теплового воздействия на образцы по предыдущему примеру температура поверхности чистого листа составила 95 градусов Цельсия, а температура поверхности листа с огнезащитной плитой - 31 градус Цельсия при температуре окружающей среды до начала испытания 23 градуса Цельсия.

Приведенные примеры показывают, что заявленный способ позволяет значительно снижать уровень теплового воздействия на защищаемые объекты и увеличивать в несколько раз допустимую длительность такого воздействия до момента необратимых изменений в перегородках.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ ИНФОРМАЦИИ.

1. Патент РФ №2034816, 10.05.1995 Сырьевая смесь для изготовления огнезащитного покрытия.

2. Патент РФ №2249568, 10.04.2005. Огнезащитная композиция «Файрекс-300» и огнезащитная преграда для кабельных проходок «Щит-АК-3»

3. Патент РФ №2265631, 10.12.2005. Огнезащитное покрытие.

4. Патент РФ №2352601, 20.04.2009. Способ получения теплоизоляционного и огнестойкого многослойного комбинированного полимерного покрытия.

5. Патент РФ №2161520, 10.01.2001. Огнегасящий полимерный композиционный материал.

6. Патент РФ №2580132 Способ получения огнезащитного покрытия на поверхности горючих и негорючих материалов, микрокапсулированный агент для создания огнезащитного покрытия на поверхности горючих и негорючих материалов, способ его получения и способ создания огнезащитного вспучивающегося покрытия.

Способ термозащиты пожарных переборок, характеризующийся тем, что переборку оснащают по крайней мере с одной стороны многослойным огнезащитным покрытием, отличающийся тем, что в качестве огнезащитного покрытия используют термоизолирующие плиты, включающие сеть из негорючего материала и порошок из природных минеральных компонентов, объединенные негорючим и не разрушающимся при изгибах и ударах связующим, при этом термоизолирующие плиты, между которыми размещают разделительную негорючую ткань, закрепляют на переборке, а в качестве внешнего покрытия используют жесткий негорючий прокат, покрытый с внешней стороны огнезащитной краской, при этом сеть из негорючего материала выполнена из асбестовых нитей, порошок из природных минеральных компонентов обладает теплоемкостью не менее чем в 5 раз выше, чем теплоемкость листа из жесткого негорючего проката, а теплопроводностью не менее чем в 4 раза ниже, чем у негорючего проката, в качестве жесткого негорючего проката применяют лист из нержавеющей стали.



 

Похожие патенты:

Настоящее изобретение относится к теплостойкому пленочному клею. Теплостойкий пленочный клей содержит армирующий наполнитель с нанесенной на него полимерной основой.

Изобретение относится к двум вариантам системы эпоксидной смолы для использования в производстве изделий. Система по существу состоит из a) смеси эпоксидной смолы, состоящей по существу из эпоксидной смолы, которая представляет собой ароматическую эпоксидную смолу на основе ароматических соединений, выбранных из группы, состоящей из бисфенола F, бисфенола A, 1,1-бис(4-гидроксифенил)этана, 1,1-дихлор-2,2-бис(4-гидроксифенил)этена, фенольных новолаков, фенольных резолов или их комбинаций, первого отвердителя, выбранного из группы полиариленалкилфосфоната, полиариленарилфосфоната и их комбинаций, необязательной монофункциональной эпоксидной добавки и добавки, выбранной из группы, состоящей из дополнительного соединения фосфора, разбавителя и их комбинаций, и b) второго отвердителя, выбранного из группы, состоящей из соединения, имеющего имидазольную группу, соединения, имеющего конденсированное имидазольное кольцо, амина и их комбинаций.
Изобретение относится к созданию пористых полимерных композиционных материалов для строительства и предназначено для ремонта и устранения дефектов строительных конструкций. Негорючая эпоксидная композиция содержит смесь фосфазенсодержащей эпоксидной смолы с жидким отвердителем и вспенивающий агент, представляющий из себя смесь алюминиевой пудры и воды.

Изобретение относится к автономным средствам пожаротушения, не требующим применения автоматизации и участия человека. Композиционный материал содержит следующие компоненты, мас.%: полимерная матрица - нитроцеллюлоза марки коллоксилин с содержанием азота 10,7-12,2% - 20-50; микрокапсулы с ядром из огнетушащего вещества - 50-80; стабилизатор - 1-2; пластификатор - 0-25.

Огнестойкий вязаный материал, имеющий толщину 0,08 мм или более, согласно методике по стандарту JIS L 1096-A (2010), и состоящий из пряжи, где пряжа содержит: неплавящееся волокно A, обладающее усадкой при высокой температуре, составляющей 3% или менее; и термопластичное волокно B, обладающее величиной LOI, составляющей 25 или более согласно JIS K 7201-2 (2007), и обладающее температурой плавления, более низкой, чем температура воспламенения неплавящегося волокна A; где пряжа обладает разрывным удлинением, превышающим 5%; и где в площади проекции раппорта огнестойкого вязаного материала доля площади, занимаемая неплавящимся волокном A, составляет 10% или более, а доля площади, занимаемая термопластичным волокном B, составляет 5% или более.
Изобретение относится к огнетеплозащитному материалу, который может использоваться в качестве противопожарных штор. Описан огнезащитный вспучивающийся материал, выполненный в виде ткани с нанесенным на нее полимерным покрытием из поливинилхлоридной композиции, включающей производное фосфорной кислоты и диоктилфталат, при этом композиция дополнительно содержит хлорпарафин, гидроксид алюминия, борат цинка и фосфорборсодержащий олигомер, в качестве производного фосфорной кислоты композиция содержит трихлорпропилфосфат, а в качестве ткани используют керамическую ткань при следующем массовом соотношении компонентов композиции, мас.ч.: поливинилхлорид 10,0, диоктилфталат 5,0, трихлорпропилфосфат 35,0, хлорпарафин 9,0-14,0, гидроксид алюминия 22,0, борат цинка 13,0, фосфорборсодержащий олигомер ФБО 1,0-6,0.
Изобретение относится к огнетеплозащитному материалу, который может использоваться в качестве противопожарных штор. Предложен огнезащитный вспучивающийся материал, выполненный в виде ткани с нанесенным на нее полимерным покрытием из поливинилхлоридной композиции, включающей производное фосфорной кислоты и диоктилфталат, при этом композиция дополнительно содержит хлорпарафин, гидроксид алюминия, борат цинка и фосфорборсодержащий олигомер, в качестве производного фосфорной кислоты композиция содержит трихлорпропилфосфат, а в качестве ткани используют базальтовую ткань при следующем массовом соотношении компонентов композиции, мас.ч.: поливинилхлорид 10,0, диоктилфталат 5,0, трихлорпропилфосфат 35,0, хлорпарафин 9,0-14,0, гидроксид алюминия 22,0, борат цинка 13,0, фосфорборсодержащий олигомер ФБО 1,0-6,0.
Изобретение относится к огнетеплозащитному материалу, который может использоваться в качестве противопожарных штор. Предложен огнезащитный вспучивающийся материал, выполненный в виде ткани из стекловолокна с нанесенным на нее полимерным покрытием из поливинилхлоридной композиции, включающей производное фосфорной кислоты и диоктилфталат, при этом композиция дополнительно содержит хлорпарафин, гидроксид алюминия, борат цинка и фосфорборсодержащий олигомер, а в качестве производного фосфорной кислоты композиция содержит трихлорпропилфосфат при следующем массовом соотношении компонентов, мас.ч.: поливинилхлорид 10,0, диоктилфталат 5,0, трихлорпропилфосфат 35,0, хлорпарафин 9,0-14,0, гидроксид алюминия 22,0, борат цинка 13,0, фосфорборсодержащий олигомер ФБО 1,0-6,0.
Изобретение относится к огнетеплозащитному материалу, который может использоваться в качестве противопожарных штор. Предложен огнезащитный вспучивающийся материал, выполненный в виде полиэфирной ткани с нанесенным на нее полимерным покрытием из поливинилхлоридной композиции, включающей трихлоралкилфосфат и наполнитель, при этом композиция дополнительно содержит хлорпарафин, диоктилфталат и фосфорборсодержащий олигомер, в качестве наполнителя композиция содержит гидроксид алюминия и борат цинка, а в качестве трихлоралкилфосфата - трихлорпропилфосфат при следующем массовом соотношении компонентов, мас.ч.: поливинилхлорид 10,0, диоктилфталат 5,0, трихлорпропилфосфат 35,0, хлорпарафин 9,0-14,0, гидроксид алюминия 22,0, борат цинка 13,0, фосфорборсодержащий олигомер ФБО 1,0-6,0.

Изобретение относится к области создания огнестойких текстильных материалов. Предложен способ придания огнестойкости текстильным материалам путем обработки последних огнезащитными препаратами-антипиренами.

Изобретение относится к предохранительным или защитным приспособлениям от огня и взрыва для тары и боеприпасов и может быть использовано для изготовления теплоизоляционного покрытия в оборонной и гражданской промышленности. Изобретение позволяет расширить возможности безопасного хранения различных технических объектов, в том числе боеприпасов от воздействия высоких температур вследствие пожаров и других источников агрессивного теплового воздействия.
Наверх