Способ измерения температуры нагрева нитей накала осветительных ламп

Изобретение относится к области термометрии и может быть использовано для измерения температуры, соответствующей нагреву нитей накала в осветительных лампах накаливания. В предлагаемом способе подают напряжение U1 на нить накала, при котором в результате нагрева возникает фиксируемое визуально или с помощью видеокамеры видимое свечение поверхности примерно половины длины нити накала. Затем измеряют напряжение U1 и ток I1, проходящий через нить накала, и по этим параметрам определяют начальное сопротивление R1 нити накала. Далее напряжение U, подаваемое на нить накала, устанавливают таким образом, чтобы ее нагрев соответствовал требуемому уровню свечения лампы. Затем измеряют напряжение U и ток I через нить накала и по этим двум параметрам рассчитывают конечное электрическое сопротивление R. Далее по начальному и конечному сопротивлению нити накала определяют ее температуру Τ по формуле

где α0 - температурный коэффициент сопротивления, соответствующий температуре T0=273 К, α1 - температурный коэффициент сопротивления, соответствующий температуре T1=800 К, при которой появляется видимое свечение нити накала. Технический результат - повышение точности измерения среднеобъемных температур нитей накала в осветительных лампах накаливания в диапазоне температур 800 К - 3000 К. 1 ил.

 

Изобретение относится к области термометрии и может быть использовано для измерения методом термосопротивления температуры, соответствующей нагреву нитей накала в осветительных лампах накаливания.

Известна полезная модель высокотемпературного термометра сопротивления, предназначенного для измерения температуры поверхностей твердых тел в диапазоне от 0°С до 1100°С (патент РФ №170706, МПК G01K 7/16, G01K 1/08, опубл. 03.05.2017). В устройстве используются платиновые термометры сопротивления. Недостатком полезной модели является узкий диапазон измерения высоких температур, что существенно ограничивает область ее применения для нитей накала в осветительных лампах накаливания. Еще одним недостатком является искажение температуры участка измеряемого объекта из-за его охлаждения в результате теплового контакта с терморезистором.

Известен прибор для теплового детектирования инфракрасного излучения (патент РФ №2595306, МПК G01J 5/20, H01L 49/02, В82В 1/00, опубл. 27.08.2016). В нем используются сверхчувствительные термометры для регистрации и измерения теплового излучения. Недостатком прибора является сложность его использования для измерения температуры, соответствующей нагреву нитей накала в лампах накаливания. Указанная проблема обусловлена тремя факторами: во-первых, - поглощением и отражением стеклянной колбой части инфракрасного излучения, во-вторых, - необходимостью внесения поправок на коэффициент излучения вольфрама, в-третьих, - неоднородным угловым распределением излучения.

Известен способ измерения яркостной температуры объекта, использующий опорный источник излучения (патент РФ №2718701, МПК G01J 5/52, опубл. 14.04.2020). Искомую яркостную температуру объекта рассчитывают с учетом энергетической светимости и эффективной ширины спектральной полосы опорного источника, центральной длины волны идеального абсолютно черного тела и коэффициента неэквивалентности. Недостатком способа является необходимость расчета коэффициента неэквивалентности спектров излучения объекта исследования и идеального абсолютно черного тела.

Известен способ определения температуры аморфных ферромагнитных микропроводов при токовом нагреве методом термосопротивления (патент РФ №2696826, МПК G01K 7/16, G01K 7/22, G01K 15/00, G01N 25/02, G01N 25/12, G01N 25/04, G01N 25/20, опубл. 06.08.2019). Сопротивление начала кристаллизации находится по зависимости сопротивления аморфных ферромагнитных микропроводов от выделяемой в них мощности. Температура начала кристаллизации находится методом дифференциальной сканирующей калориметрии. Недостатком способа является необходимость нагрева объекта исследования до температуры плавления.

Известен способ контроля температуры проводов линии электропередачи (патент РФ №2547837, МПК H02G 7/16, G08B 19/02, опубл. 10.04.2015). Способ основан на определении полного сопротивления для участка линии электропередачи между двумя точками и на расчете температуры проводов методом термосопротивления. Основным недостатком указанного способа является использование низкотемпературного нелинейного участка на зависимости сопротивления проводов от их температуры. Еще одним недостатком указанного способа является сложность при нахождении начального сопротивления проволоки с помощью омметра, поскольку при таких измерениях нить заметно нагревается.

Наиболее близким, по сути, к заявляемому изобретению является способ измерения среднеобъемной температуры для нитей накала в осветительных лампах накаливания (Захаров Ю.А., Гоц С.С, Бахтизин Р.З. «Метрологические аспекты измерения среднеобъемной температуры нитей накала в осветительных лампах» - Измерительная техника, 2019, №4, С.51-56). Способ основан на измерении сопротивления R нити накала и вычислении температуры Τ по формуле

Τ=Т0+(R-R0)/(α0R0),

где Т0 - начальная температура нити накала, приблизительно равная температуре окружающей среды (около 300 К), R0 - сопротивление нити при температуре окружающей среды и нулевом напряжении на нити, α0 - температурный коэффициент сопротивления вольфрама.

Основные недостатки указанного способа связаны со следующими факторами: Во-первых, сложно учесть реальную начальную температуру Т0 нити накала внутри колбы лампы. Во-вторых, во избежание дополнительного нагрева нити накала при измерении ее сопротивления необходимо применять достаточно трудоемкую экстраполяцию зависимости сопротивления нити накала от напряжения. В-третьих, необходимо вносить поправку для величины α0, что сопряжено с большими неопределенностями, связанными, в свою очередь, с неопределенностью величины Т0. В четвертых, вблизи комнатных температур проявляются нелинейные отклонения зависимости от температуры сопротивления нити накала. Это связано с близостью указанных температур к температуре Дебая для вольфрама.

Задачей изобретения и содержанием соответствующего этой задаче технического результата является повышение точности измерения среднеобъемных температур нитей накала в осветительных лампах накаливания в диапазоне температур 800 К - 3000 К.

Поставленная задача решается, а технический результат достигается тем, что для расчета температуры нити накала используется не температура окружающей среды, а температура Т1 появления видимого свечения поверхности примерно половины длины нити накала. Напряжение, подаваемое на нить накала (1), устанавливается таким образом, чтобы она нагрелась до температуры Т1. При данной температуре Т1 измеряются значения напряжения U1 и тока I1, проходящего через нить накала. По полученным значениям U1 и I1 рассчитывается сопротивление R1 нити при температуре T1. Обнаружение момента появления видимого свечения осуществляется визуально или с помощью видеокамеры (2), спектральная чувствительность которой на границе ИК области ограничена длиной волны 760 нм.

Далее, напряжение U, подаваемое на нить накала, устанавливается таким образом, чтобы ее нагрев соответствовал требуемому уровню свечения или режиму работы лампы накаливания. Затем измеряется напряжение U и ток I через нить накала, по этим двум параметрам рассчитывается конечное электрическое сопротивление R. По полученным значениям R1 и R определяется температура нити накала:

где α0 - температурный коэффициент сопротивления, соответствующий температуре T0=273 К таяния льда, T1=800 К - табличное или предварительно измеренное значение температуры, соответствующей появлению видимого излучения металлов.

Реализацию предлагаемого способа осуществляют следующим образом. От регулируемого по величине напряжения (тока) источника (3) постоянного или переменного напряжения через последовательно включенный амперметр (4) подают необходимое по величине напряжение (или необходимый ток) через контакты патрона на клеммы питания (контакты цоколя) лампы накаливания. Для уменьшения погрешностей измерений, обусловленных падением напряжения между контактами клемм питания лампы и контактами патрона, вольтметр (5), используемый для измерения падений напряжения U1 и U на нити накала, подключается непосредственно к клеммам питания (к контактам цоколя) лампы накаливания.

Далее, последовательно плавно увеличивая напряжение (ток) регулируемого источника питания, добиваются нагрева нити накала до температуры Т1 появления свечения поверхности примерно половины длины нити накала. Фиксацию указанного момента осуществляют визуально или с помощью установленной на штативе видеокамеры с ручной фокусировкой. Камеру фокусируют до появления на ее экране четкого изображения светящейся нити накала. Для ограничения спектральной чувствительности видеокамеры на границе видимой и инфракрасной области используют светофильтр (6), установленный на объективе видеокамеры. Съемку изображения нити накала необходимо производить в темноте.

При достижении температуры Т1 измеряют значения напряжения U1 и тока I1, проходящего через нить накала. По полученным значениям U1 и I1 рассчитывают сопротивление R1 согласно следующей формуле

R1=U1/I1

Далее, напряжение U, подаваемое на нить накала, устанавливают таким образом, чтобы ее нагрев соответствовал требуемому уровню свечения или режиму работы лампы накаливания. Затем измеряют напряжение U и ток I через нить накала, по этим двум параметрам рассчитывают конечное электрическое сопротивление R согласно формуле

R=U/I

По полученным значениям R1 и R определяют температуру нити накала согласно формуле:

где α0 - температурный коэффициент сопротивления вольфрама (или иного используемого в лампе накаливания материала нити накала), соответствующий температуре T0=273 К таяния льда, T1=800 К - табличное или предварительно измеренное значение температуры, соответствующей появлению видимого излучения металлов.

Краткое описание чертежей

На фиг. 1 показана функциональная схема экспериментальной установки. 1 - нить накала лампы, 2 - видеокамера с ручной фокусировкой, 3 - лабораторный блок питания постоянного тока, 4 - миллиамперметр, 5 - вольтметр, 6 - светофильтр с полосой пропускания излучения 400-760 нм, 7 - собирающая линза.

Пример реализации способа измерения

Для проверки работоспособности предлагаемого способа согласно изобретению были проведены измерения среднеобъемной температуры нагрева у нитей накала для двух осветительных ламп накаливания мощностью 25 Вт, рассчитанных на работу с номинальным напряжением 230 В. Измерение напряжений U1 и U осуществлялось с помощью цифрового вольтметра с точностью ±0,1 В и ±1 В соответственно. Измерение токов осуществлялось с помощью цифрового амперметра с точностью ±0,1 мА.

Были получены следующие результаты измерений токов и напряжений:

Для лампы №1: U1=25 В, I1=43,6 мА, R1=U1/I1=573,4 Ом. При номинальном напряжении: U=230 В, I=110,2 мА, R=U/I=2087 Ом, T=2680 К.

Для лампы №2: U1=24 В, I1=41,9 мА, R1=U1/I1=572,8 Ом. При номинальном напряжении: U=230 В, I=110,4 мА, R=U/I=2083 Ом, T=2678 К≈2680 К.

Полученные значения температуры при номинальном напряжении U=230 В сравнивались с номинальной температурой 2700 К, указанной в паспортных данных на лампы. Для лампы №1 получено относительное отклонение 0,7%, а для лампы №2 - 0,8%.

Полученные численные результаты подтверждают работоспособность и достижение технического результата для предлагаемого способа измерения среднеобъемной температуры для нитей накала осветительных ламп накаливания.

Способ измерения температуры нагрева нитей накала осветительных ламп накаливания, заключающийся в том, что через нить накала пропускают электрический ток, приводящий к ее нагреву и появлению ее видимого свечения, при этом измеряется ток I и падение напряжения U на нити накала и вычисляется ее сопротивление R, отличающийся тем, что на нить накала подают напряжение U1, при котором возникает видимое свечение поверхности примерно половины длины нити накала, фиксируемое визуально или с помощью видеокамеры, спектральная чувствительность которой на границе ИК области ограничена длиной волны 760 нм, далее измеряют напряжение U1 и ток I1, проходящий через нить накала, и по этим параметрам определяют начальное сопротивление R1 нити накала, затем напряжение U, подаваемое на нить накала, устанавливают таким образом, чтобы ее нагрев соответствовал требуемому уровню свечения лампы накаливания, затем измеряют напряжение U и ток I через нить накала, по этим двум параметрам рассчитывают конечное электрическое сопротивление R, затем по начальному и конечному сопротивлению нити определяют приращение температуры Τ нити накала методом термосопротивления, при этом при проведении вычислений используют температурный коэффициент сопротивления α1, соответствующий температуре начала появления видимого свечения нити накала:

где α0 - температурный коэффициент сопротивления, соответствующий температуре T0=273 К таяния льда, T1=800 К - табличное или предварительно измеренное значение температуры, соответствующей появлению видимого излучения металлов.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано для контроля уровня отложений. Системы потока текучей среды могут содержать один или несколько резистивных температурных датчиков (RTD), контактирующих с жидкостью, протекающей через систему.

Изобретение относится к способу измерения температуры намотанного компонента, содержащему подачу известного постоянного тока в калибровочный провод (1) из резистивного материала; причем сопротивление калибровочного провода меняется вместе с температурой согласно известному закону; измерение разности потенциалов между зажимами (7a, 7b) упомянутого калибровочного провода; и этап вычисления, в ходе которого разность потенциалов преобразуется в среднюю температуру калибровочного провода; причем упомянутый калибровочный провод (1) намотан внутри катушки и уложен в ряд витков «Вперед» (5) и в ряд витков «Обратно» (6), объединенных попарно по существу с одинаковыми геометрической формой и местом расположения.

Изобретение относится к способу измерения температуры намотанного компонента, содержащему подачу известного постоянного тока в калибровочный провод (1) из резистивного материала; причем сопротивление калибровочного провода меняется вместе с температурой согласно известному закону; измерение разности потенциалов между зажимами (7a, 7b) упомянутого калибровочного провода; и этап вычисления, в ходе которого разность потенциалов преобразуется в среднюю температуру калибровочного провода; причем упомянутый калибровочный провод (1) намотан внутри катушки и уложен в ряд витков «Вперед» (5) и в ряд витков «Обратно» (6), объединенных попарно по существу с одинаковыми геометрической формой и местом расположения.

Изобретение относится к области термометрии и может быть использовано для измерения температуры окружающей среды. Заявлен способ измерения температуры среды, согласно которому программно под управлением контроллера измеряют падение напряжения на терморезисторе и на эталонном резисторе.

Изобретение относится к области термометрии и может быть использовано для измерения температуры окружающей среды. Заявлено устройство для измерения температуры среды, в котором источник постоянного напряжения 1 подключен выходом к n-канальному коммутатору постоянного напряжения 6 и формирует ток опроса в измерительной цепи.

Изобретение относится к резистивному термометру, состоящему из множества компонентов, по меньшей мере, включающему: по меньшей мере, одну подложку (1), состоящую, в основном, из материала, коэффициент теплового расширения которого, в основном, выше 10.5 ppm/K; по меньшей мере, один резистивный элемент (4), расположенный на подложке (1); и, по меньшей мере, один электроизолирующий разделительный слой (2), расположенный, в основном, между резистивным элементом (4) и подложкой (1).

Изобретение относится к области стабилизации и регулирования температуры и может быть использовано при изготовлении и настройке работоспособности серийных терморегулирующих устройств, обеспечивающих управление исполнительными органами в заданном диапазоне температур. .

Изобретение относится к области измерительной техники и может быть использовано в медицинской диагностике для неинвазивного измерения температуры частей тела и внутренних органов биообъекта при контакте с поверхностью. .
Наверх