Способ определения поверхностного натяжения твёрдого тела

Изобретение относится к области исследования свойств поверхностей твёрдых тел и может найти применение при решении фундаментальных и прикладных задач в химической, нефтехимической, лакокрасочной, фармацевтической и пищевой промышленности. Сущность: осуществляют определение краевого угла смачивания обезжиренной поверхности твёрдого тела с молярным объёмом , определение высоты нарушения сплошности объёма капли на сухой поверхности твёрдого тела и определение поверхностного натяжения по формуле, Н/м: , где ; ρж – плотность жидкости, кг/м3; wк – скорость свободного падения капли с высоты, при которой начинает нарушаться сплошность её объёма на поверхности, м/с; dк – диаметр капли, м; k – коэффициент, учитывающий проекцию силы поверхностного натяжения на границе раздела жидкость – газ на плоскость расположения поверхности твёрдого тела; h – высота свободного падения капли, при которой начинает нарушаться сплошность её объёма на поверхности, м; θ – краевой угол смачивания при натекании жидкости на поверхность при температуре 293 К, град.; Т – температура поверхности твёрдого тела, К; Vм – молярный объём вещества твёрдого тела, м3/моль. Технический результат: упрощение способа определения поверхностного натяжения твёрдого тела. 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к области исследования физико-химических свойств поверхностей твёрдых тел и может найти применение в физической химии и физике твёрдого тела при решении различных фундаментальных задач, а также при решении прикладных задач во многих отраслях промышленности, например, химической, нефтехимической, лакокрасочной, фармацевтической и пищевой.

Известен способ определения межфазного натяжения на границе раздела жидкость/твёрдое тело путём погружения в измеряемую жидкость твёрдой пластины и фиксирования усилия её отрывы от поверхности жидкости взвешиванием сосуда, в котором она находится, и периметра смачивания (патент РФ № 2312324, МПК G 01 N 13/02, 10.12.2007 г.).

К недостаткам данного способа можно отнести его трудоёмкость, обусловленную следующими обстоятельствами. Во-первых, необходимостью специального изготовления из исследуемого твёрдого тела тонкой и гладкой пластины и, если она является металлической, предварительного её отжига для минимизации проявления анизотропии физико-химических свойств её поверхности. Во-вторых, необходимостью наличия дополнительных технических средств (неуказанных в описании изобретения), позволяющих проводить измерение поверхностного натяжения согласно данному способу при температуре жидкости, отличной от температуры окружающей среды.

Известен способ определения силы поверхностного натяжения твёрдых тел (в том числе на границе с жидкостью) методом нулевой ползучести путём предварительных растяжения, взвешивания и нагревания протяжённого образца, последующего соприкосновения его с опорой и завершающего фиксирования реакции опоры (авторское свидетельство СССР № 940010, МПК G 01 N 13/02, 30.06.1982 г.).

К недостаткам данного способа можно отнести его трудоёмкость, обусловленную следующими обстоятельствами. Во-первых, необходимостью специального изготовления из исследуемого твёрдого тела образца в виде тонкой проволоки или ленты с перешейком или утонением таким образом, чтобы он в подвешенном состоянии мог растягиваться в этом месте под действием собственного веса (т. е. данный способ невозможно использовать для определения поверхностного натяжения хрупких твёрдых тел, например, стекла, кварца и т. п.). Во-вторых, необходимостью нагревания образца до 0,8÷0,9 температуры его плавления с последующей выдержкой при этой температуре в течении 2÷4 часов. В-третьих, необходимостью наличия высокоточной приборной базы, например механоэлектрических микровесов, для работы с которой необходимы соответствующие навыки.

Известен способ определения поверхностного натяжения твёрдых тел различной природы путём предварительного отжига нитевидного образца с одновременным приложением растягивающей нагрузки в пределах упругой деформации, последующего снижения его температуры до температуры измерения и завершающих возбуждения в нём собственных механических колебаний и фиксирования их частоты (авторское свидетельство СССР
№ 966561, МПК G 01 N 13/02, 15.10.1982 г.).

Известен способ измерения поверхностного натяжения металлов в твёрдой фазе в специальном устройстве, содержащем рычажный механизм с компенсационным грузом, путём предварительного отжига нитевидного образца при температуре 0,9 температуры его плавления в вакууме, последующего его нагревания до наступления явления ползучести, при котором нарушается равновесие рычага, и завершающего уравновешивания рычага с фиксацией величины перемещения компенсационного груза (патент РФ № 2314515, МПК G 01 N 13/02, 10.01.2008 г.).

К общим недостаткам двух данных способов можно отнести то, что они не позволяют определять поверхностное натяжение на границе раздела твёрдое тело – жидкость, являющееся наиболее информативной физико-химической характеристикой, а также их трудоёмкость, обусловленную необходимостью наличия высокоточной приборной базы (например микроштатив, звуковой генератор, цифровой частотомер, специальное герметичное устройство с рычажным механизмом и оптической системой отсчёта), для работы с которой необходимы соответствующие навыки.

В результате проведённого поиска характерных отличительных признаков среди аналогов не обнаружено.

Задача, на которую направлено предлагаемое изобретение – разработка способа определения поверхностного натяжения твёрдых тел любой природы на границах раздела твёрдое тело – жидкость и твёрдое тело – газ.

Техническим результатом является упрощение способа определения поверхностного натяжения твёрдого тела.

Технический результат достигается тем, что в способе определения поверхностного натяжения твёрдого тела с молярным объёмом
м3/моль на границе раздела фаз, заключающемся в обезжиривании поверхности твёрдого тела известного состава, определении краевого угла смачивания, установке поверхности твёрдого тела строго горизонтально, определении высоты, при которой начинает нарушаться сплошность объёма капли на сухой поверхности твёрдого тела, посредством дискретной подачи жидкости каплями известного диаметра и определении поверхностного натяжения по формуле, Н/м:

,

где ;

ρж – плотность жидкости, кг/м3;

wк – скорость свободного падения капли с высоты, при которой начинает нарушаться сплошность её объёма на поверхности, м/с;

dк – диаметр капли, м;

k – коэффициент, учитывающий проекцию силы поверхностного натяжения на границе раздела жидкость – газ на плоскость расположения поверхности твёрдого тела;

h – высота свободного падения капли, при которой начинает нарушаться сплошность её объёма на поверхности, м;

θ – краевой угол смачивания при натекании жидкости на поверхность при температуре 293 К, град.;

Т – температура поверхности твёрдого тела, К;

Vм – молярный объём вещества твёрдого тела, м3/моль.

Способ определения поверхностного натяжения твёрдого тела характеризующийся тем, что при определении поверхностного натяжения на границе раздела твёрдое тело – жидкость коэффициент, учитывающий проекцию силы поверхностного натяжения на границе раздела жидкость – газ на плоскость расположения поверхности твёрдого тела, равен нулю.

Способ определения поверхностного натяжения твёрдого тела характеризующийся тем, что при определении поверхностного натяжения на границе раздела твёрдое тело – газ коэффициент, учитывающий проекцию силы поверхностного натяжения на границе раздела жидкость – газ на плоскость расположения поверхности твёрдого тела, равен:

,

где σж-г – поверхностное натяжение на границе раздела жидкость – газ, Н/м.

Сущностью изобретения является определение поверхностного натяжения твёрдого тела с молярным объёмом м3/моль посредством смачивания поверхности твёрдого тела каплями жидкости, подаваемыми с высоты, при свободном падении с которой на поверхности начинает нарушаться сплошность объёма капель, т. е. капля, при равномерном растекании по горизонтальной поверхности, начинает дробиться на две и/или более части. Нарушение сплошности объёма капель обусловлено тем, что кинетическая энергия капли, накопленная ею при свободном падении с этой высоты, сравнивается с энергией образования новых поверхностей контакта фаз.

Поверхностное натяжение на границе раздела фаз (твёрдое тело – жидкость, твёрдое тело – газ) определяется по заявленной формуле:

,

где ;

ρж – плотность жидкости, кг/м3;

wк – скорость свободного падения капли с высоты, при которой начинает нарушаться сплошность её объёма на поверхности, м/с;

dк – диаметр капли, м;

k – коэффициент, учитывающий проекцию силы поверхностного натяжения на границе раздела жидкость – газ на плоскость расположения поверхности твёрдого тела;

h – высота свободного падения капли, при которой начинает нарушаться сплошность её объёма на поверхности, м;

θ – краевой угол смачивания при натекании жидкости на поверхность при температуре 293 К, град.;

Т – температура поверхности твёрдого тела, К;

Vм – молярный объём вещества твёрдого тела, м3/моль.

При этом при определении поверхностного натяжения на границе раздела твёрдое тело – жидкость коэффициент k, согласно уравнению Юнга-Лапласа, не имеет физического смысла. А при определении поверхностного натяжения на границе раздела твёрдое тело – газ коэффициент k, согласно уравнению Юнга-Лапласа, учитывает проекцию силы поверхностного натяжения на границе раздела жидкость – газ на плоскость расположения поверхности твёрдого тела.

Для снижения трудоёмкости предлагаемого способа величина скорости свободного падения капли в момент её соударения с поверхностью твёрдого тела определяется с помощью «Программы для расчёта кинематических характеристик процесса нестационарного осаждения сферической частицы в поле действия силы тяжести» (свидетельство о государственной регистрации программы для ЭВМ № 2015660064 от 21.09.2015 г.), позволяющей с точностью до 1% рассчитать значение скорости в зависимости от диаметра капли, высоты её свободного падения, плотности жидкости, плотности и вязкости окружающей среды.

Природа твёрдого тела, в том числе состояние его поверхности, определяемое шероховатостью и адгезионными свойствами, учитывается через молярный объём вещества твёрдого тела, краевой угол смачивания при натекании жидкости на его поверхность при температуре 293 К, а также через высоту свободного падения капли, при которой нарушается сплошность её объёма на поверхности. Это позволяет с помощью заявленного способа определять поверхностное натяжение твёрдого тела с учётом анизотропии физико-химических свойств его поверхности, что способствует снижению трудоёмкости предлагаемого способа. Необходимо отметить, что для полимерных твёрдых тел используется молярный объём их мономеров.

Таким образом, предлагаемый способ позволяет снизить трудоёмкость определения поверхностного натяжения твёрдого тела любой природы с молярным объёмом м3/моль.

Способ определения поверхностного натяжения твёрдого тела с молярным объёмом м3/моль осуществляется следующим образом. Вначале поверхность твёрдого тела известного состава обезжиривают и определяют краевой угол смачивания при натекании на неё жидкости при 293 К. Затем устанавливают поверхность строго горизонтально. Далее при температуре окружающей среды с некоторой начальной высоты, выбранной произвольно (например 0,3 м), дискретно подают на поверхность капли жидкости известного диаметра, плавно уменьшая или увеличивая высоту на величину переменного шага, также выбранного произвольно (например 0,002÷0,01 м), до нахождения с необходимой точностью, определяемой минимальным шагом (0,002 м), высоты свободного падения капель, при которой они начинают дробиться на две и/или более части. При этом необходимо обеспечить, чтобы дробление капель осуществлялось на сухой поверхности. В завершении по заявленной формуле рассчитывают поверхностное натяжение с учётом условий границы раздела фаз: твёрдое тело – жидкость или твёрдое тело – газ.

Пример. По предлагаемому способу было определено поверхностное натяжение твёрдых тел с молярным объёмом м3/моль на границах раздела твёрдое тело – жидкость и твёрдое тело – газ.

В качестве твёрдых тел использовались плоские диски диаметром
0,06 м и толщиной 0,003 м, изготовленные из алюминиевого сплава и тефлона при токарной обработке для создания реальной анизотропии физико-химических свойств их поверхностей. Нагрев твёрдых тел обеспечивался электронагревателем, подключённым к сети переменного тока через лабораторный автотрансформатор, а температура их поверхностей определялась с помощью инфракрасного термометра – пирометра. Молярный объём веществ твёрдых тел определялся по формуле, м3/моль:

,

где Мт – молярная масса вещества твёрдого тела известного состава, кг/моль;

ρт – плотность твёрдого тела (определялась методом гидростатического взвешивания), кг/м3.

В качестве жидкости использовалась дистиллированная вода. Краевые углы смачивания при её натекании на обезжиренные ацетоном поверхности твёрдых тел при температуре 293 К определялись с помощью отсчётного микроскопа. Диаметр капель воды, получаемый из калиброванной насадки, определялся как среднестатистический весовым методом и был равен 4,234⋅10-3 м.

Таблица

* Vм – молярный объём вещества твёрдого тела (для полимера берётся молярный объём мономера), м3/моль;

θ – краевой угол смачивания при натекании жидкости на поверхность твёрдого тела при температуре 293 К, град.

** В.И. Ниженко, Л.И. Флока «Поверхностное натяжение жидких металлов и сплавов (одно- и двухкомпонентные системы)»,
М.: Металлургия, 1981, 208 с.; Х.Х. Калажоков, З.Х. Калажоков, Х.Б. Хоконов «Поверхностное натяжение расплава чистого алюминия»,
Журнал технической физики, 2003, т. 73, вып. 2, с. 141-142; Ричард ван Нурт «Основы стоматологического материаловедения»,
КМК-Инвест, 2004, 304 с.; Ю.А. Паньшин, С.Г. Малкевич, Ц.С. Дунаевская «Фторопласты», Л.: Химия, 1978, 232 с.

Степень точности равна ±4 % (для тефлона данные отсутствуют).

Высота свободного падения капель жидкости h на горизонтальные поверхности твёрдых тел, при которой они начинают дробиться на две и/или более части, определялась с помощью линейки. Скорость свободного падения капель wк с высоты h определялась с помощью «Программы для расчёта кинематических характеристик процесса нестационарного осаждения сферической частицы в поле действия силы тяжести» (свидетельство о государственной регистрации программы для ЭВМ № 2015660064 от 21.09.2015 г.).

Поверхностное натяжение твёрдых тел рассчитывалось по заявленной формуле с учётом границы раздела фаз: твёрдое тело – жидкость и твёрдое тело – газ.

В таблице приведены средние значения экспериментальных данных и расчётных параметров с указанием их абсолютных отклонений, а также справочные величины поверхностного натяжения на границе раздела твёрдое тело – газ, степень точности которых равна ±4 %.

Анализируя данные таблицы, можно сделать вывод о том, что предлагаемый простой способ обеспечивает справочную точность (±4 %) определения поверхностного натяжения твёрдого тела на границе раздела твёрдо тело – газ с учётом анизотропии физико-химических свойств поверхности твёрдого тела любой природы.

Таким образом, предлагаемый способ определения поверхностного натяжения твёрдого тела с молярным объёмом м3/моль на границах раздела твёрдое тело – жидкость и твёрдое тело – газ соответственно является простым и позволяет снизить трудоёмкость его определения.

1. Способ определения поверхностного натяжения твёрдого тела с молярным объёмом м3/моль на границе раздела фаз, заключающийся в обезжиривании поверхности твёрдого тела известного состава, определении краевого угла смачивания, установке поверхности твёрдого тела строго горизонтально, определении высоты, при которой начинает нарушаться сплошность объёма капли на сухой поверхности твёрдого тела, посредством дискретной подачи жидкости каплями известного диаметра и определении поверхностного натяжения по формуле, Н/м:

,

где ;

ρж – плотность жидкости, кг/м3;

wк – скорость свободного падения капли с высоты, при которой начинает нарушаться сплошность её объёма на поверхности, м/с;

dк – диаметр капли, м;

k – коэффициент, учитывающий проекцию силы поверхностного натяжения на границе раздела жидкость – газ на плоскость расположения поверхности твёрдого тела;

h – высота свободного падения капли, при которой начинает нарушаться сплошность её объёма на поверхности, м;

θ – краевой угол смачивания при натекании жидкости на поверхность при температуре 293 К, град;

Т – температура поверхности твёрдого тела, К;

Vм – молярный объём вещества твёрдого тела, м3/моль.

2. Способ по п. 1, отличающийся тем, что при определении поверхностного натяжения на границе раздела твёрдое тело – жидкость коэффициент, учитывающий проекцию силы поверхностного натяжения на границе раздела жидкость – газ на плоскость расположения поверхности твёрдого тела, равен нулю.

3. Способ по п. 1, отличающийся тем, что при определении поверхностного натяжения на границе раздела твёрдое тело – газ коэффициент, учитывающий проекцию силы поверхностного натяжения на границе раздела жидкость – газ на плоскость расположения поверхности твёрдого тела, равен:

,

где σж-г – поверхностное натяжение на границе раздела жидкость – газ, Н/м.



 

Похожие патенты:

Изобретение относится к области исследования свойств поверхностей твёрдых тел и может найти применение при решении фундаментальных и прикладных задач в химической, нефтехимической, лакокрасочной, фармацевтической и пищевой промышленности. Сущность: осуществляют определение краевого угла смачивания обезжиренной поверхности твёрдого тела с молярным объёмом м3/моль, определение высоты нарушения сплошности объёма капли на сухой поверхности твёрдого тела и определение поверхностного натяжения по формуле, Н/м: , где ; ρж – плотность жидкости, кг/м3; wк – скорость свободного падения капли с высоты, при которой начинает нарушаться сплошность её объёма на поверхности, м/с; dк – диаметр капли, м; k – коэффициент, учитывающий проекцию силы поверхностного натяжения на границе раздела жидкость – газ на плоскость расположения поверхности твёрдого тела; h – высота свободного падения капли, при которой начинает нарушаться сплошность её объёма на поверхности, м; θ – краевой угол смачивания при натекании жидкости на поверхность при температуре 293 К, град; Т – температура поверхности твёрдого тела, К; Vм – молярный объём вещества твёрдого тела, м3/моль.

Изобретение относится к измерительной технике и может быть использовано для определения коэффициентов диффузии в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой и строительной промышленности. Способ определения коэффициента диффузии в листовых капиллярно-пористых материалах заключается в том, что в исследуемом листовом материале создают равномерное начальное содержание распределенного в твердой фазе растворителя, затем исследуемый материал помещают на плоскую подложку из непроницаемого для растворителя материала, гидроизолируют верхнюю поверхность материала, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия дозой растворителя, затем измеряют изменение во времени сигнала гальванического преобразователя на заданном расстоянии от точки нанесения импульса дозой растворителя, фиксируют момент времени достижения заданного значения сигнала гальванического датчика и рассчитывают коэффициент диффузии, при этом измеряют изменение во времени сигнала дополнительного гальванического датчика на другом расстоянии от точки нанесения импульса дозой растворителя, фиксируют моменты времени τ1 и τ2, при которых достигаются одинаковые значения сигналов соответственно первого датчика E1 и второго датчика E2 из диапазона (0,7 – 0,9) Ee на нисходящих ветвях кривых изменения сигналов во времени этих двух датчиков, а расчет коэффициента диффузии производят по формуле: , где r1 и r2 – расстояние между электродами соответственно первого и второго гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия; Ee - максимально возможное значение сигнала датчиков, соответствующее переходу растворителя из области связанного с твердой фазой исследуемого материала в область свободного состояния.

Изобретение относится к области исследования характеристик порошковых материалов, в частности определения их смачиваемости. Способ определения смачиваемости порошковых материалов включает нахождение краевого угла капли жидкости, помещенной на брикет спрессованного порошка, при этом порошковый материал прессуют в брикет с минимальной шириной не менее кратного удвоенного диаметра капли жидкости до относительной плотности брикета не менее 0,92, одну или несколько капель одной или нескольких жидкостей помещают на торцевую поверхность брикета с высоты (h) 0,005-0,01 м, краевой угол измеряют методом анализа последовательных изображений фотосъемки, выполненных с частотой 10 кадров в секунду, измеряют краевой угол (θc) на кадре, полученном через одну секунду после касания каплей поверхности брикета.

Заявленное изобретение относится к области анализа растворов, а именно: предназначено для определения степени растворения. Техническим результатом является повышение точности измерения.

Использование: для определения смачиваемости горных пород пластовыми и закачиваемыми флюидами. Сущность изобретения заключается в том, что образец горной породы помещают в герметичную измерительную ячейку калориметра, осуществляют дегазацию образца и определяют свободный объем измерительной ячейки, оставшийся после размещения образца.

Изобретение относится к области исследования физико-химических свойств поверхности и предназначено для определения контактного угла смачивания поверхности раздела газовой и твердой фаз образца горной породы, представленного в виде порошка. Заявлен оптический тензиометр для измерения контактного угла смачивания на порошковых препаратах горной породы методом прикрепленного пузырька, выполненный в виде термостатированной оптически прозрачной ванны, оснащенной воздуховодом-дозатором, состоящим из поршня в гильзе и обратной иглы, оснащенный держателем и оптически цифровым блоком.

Изобретение относится к способу определения коэффициента диффузии в массивных изделиях из ортотропных капиллярно-пористых материалов, заключающемуся в создании в исследуемом образце равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности образца в контакт с источником дозы растворителя, импульсном увлажнении в заданном направлении исследуемого ортотропного материала по прямой линии движущимся источником растворителя постоянной производительности, выполнении электродов гальванического преобразователя в виде прямолинейных отрезков и размещении их с обеих сторон линии импульсного увлажнения на прямых, параллельных линии импульсного увлажнения и расположенных на одинаковом заданном расстоянии от нее, измерении изменения во времени ЭДС гальванического преобразователя, причем импульсное воздействие осуществляют дозой растворителя, рассчитываемой по формуле: , где ρ0 - плотность исследуемого образца в сухом состоянии; Up - равновесная концентрация растворителя в исследуемом образце при контакте с насыщенными парами растворителя при заданной температуре; r0 - расстояние между электродами гальванического преобразователя и линией воздействия дозой растворителя на поверхность контролируемого изделия; L - длина линии импульсного воздействия; а моменты времени τ1 и τ2 фиксируют при достижении равных значений сигнала гальванического преобразователя в окрестности значения 0.8 Еp, где Еp - ЭДС гальванического преобразователя при концентрации Up.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности. Способ определения коэффициента диффузии растворителей в листовых изделиях из капиллярно-пористых материалов заключается в том, что в исследуемом листовом материале создают равномерное начальное содержание распределенного в твердой фазе растворителя, затем исследуемый материал помещают на плоскую подложку из непроницаемого для растворителя материала, гидроизолируют верхнюю поверхность материала, в начальный момент времени осуществляют импульсное точечное увлажнение верхней поверхности исследуемого изделия дозой растворителя, затем измеряют изменение во времени сигнала гальванического преобразователя на заданном расстоянии от точки нанесения импульса дозой растворителя, фиксируют значения сигнала гальванического датчика в два момента времени и рассчитывают коэффициент диффузии, при этом импульсное воздействие осуществляют дозой растворителя, рассчитываемой по формуле: , а моменты времени τ1 и τ2 фиксируют при достижении равных значений сигнала гальванического преобразователя в окрестности значения 0.9 Ee, где h - толщина исследуемого материала; ρ0 - плотность исследуемого образца в сухом состоянии; Ue - равновесная концентрация растворителя в исследуемом образце при контакте с насыщенными парами растворителя при заданной температуре; r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия; Ee - значение сигнала гальванического преобразователя при концентрации Ue.

Изобретение относится к способу измерения и регулирования в оперативном режиме и в реальном времени вспенивания технологической текучей среды в процессе обработки текучей среды. Способ содержит: обеспечение побочного потока (3) технологической текучей среды (1) к сосуду (8) вспенивающей камеры при поддержании постоянного уровня технологической текучей среды в сосуде вспенивающей камеры и в котором может быть искусственно создана пена, создание пены и накопление пены (11) в сосуде (8) вспенивающей камеры, излучение сигнала от бесконтактного оптического датчика (16) измерения расстояния, причем излученный сигнал (17) отражается от поверхности накопившейся пены (11) назад к измерительному датчику (16), передачу сигнала к микропроцессору (19), который вычисляет высоту накопившейся пены на основании постоянного уровня технологической текучей среды (15) в сосуде (8), и регулирование количества поставляемого в технологический поток пеногасителя.

Изобретение относится к испытательному устройству и способу для испытания систем пылеподавления. Испытательное устройство для испытания систем пылеподавления, которые представляют собой объекты, имеющие характерные поверхности, объекты, имеющие покрытия, предметы, обработанные особым образом, или поверхности текучих сред, причем эти поверхности, покрытия или особые виды обработки удерживают максимально возможное количество пыли, которая вошла в контакт с вышеперечисленными объектами и предметами, указанное испытательное устройство включает корпус с двумя камерами, отделенными друг от друга окном, которое включает, по меньшей мере, одно перепускное отверстие, причем средства подсчета частиц соединены с возможностью отсоединения с по меньшей мере одной из указанных двух камер, и при этом первая камера из указанных по меньшей мере двух камер включает дверцу и оборудована средствами подачи для подачи воздуха свободного от частиц в первую камеру, а вторая камера из указанных по меньшей мере двух камер оборудована выпускными средствами для выпуска воздуха из второй камеры, причем первая камера выполнена с возможностью размещения внутри нее пылесодержащего объекта, предмета или текучей среды.
Наверх