Способ контроля дебита газовой скважины

Изобретение относится к газодобывающей промышленности и может быть использовано для непрерывного измерения дебита газовых скважин в процессе их эксплуатации. Согласно способу газовую скважину переводят из рабочего режима в исследовательский режим, для чего перенаправляют газ, выходящий из газовой скважины, в устьевой трубопровод, предназначенный для проведения исследований. Посредством расходомера фиксируют текущее значение дебита газовой скважины и фиксируют соответствующее текущему дебиту значение устьевой температуры газа. Производят постепенное уменьшение величины дебита газовой скважины до полного останова газовой скважины, в процессе упомянутого уменьшения величины дебита газовой скважины осуществляют постоянную фиксацию значений текущего дебита газовой скважины и соответствующего ему значения устьевой температуры газа, по зафиксированным значениям строят график зависимости устьевой температуры газа от дебита газовой скважины. При функционировании газовой скважины в рабочем режиме фиксируют текущее значение устьевой температуры газа и по построенному графику зависимости устьевой температуры газа от дебита газовой скважины определяют значение текущего дебита газовой скважины. Техническим результатом заявленного изобретения является исключение гидравлических потерь при определении дебита газовой скважины, упрощение и удешевление контроля дебита скважины и повышение надежности процесса измерения дебита. 1 ил.

 

Изобретение относится к газодобывающей промышленности и может быть использовано для непрерывного измерения дебита (расхода газа) газовых скважин в процессе их эксплуатации.

Известен способ измерения дебита (расхода) по газу для газовых скважин при проведении газодинамических исследований на установленных режимах фильтрации с использованием типового диафрагменного измерителя критического течения (ДИКТа), характеризующийся организацией движения потока природного газа газовой скважины в режиме критического истечения через диафрагму ДИКТа, измерение с использованием средств измерений утвержденного типа температуры и давления для потока природного газа в корпусе ДИКТа перед диафрагмой, отбор пробы потока природного газа, определение компонентного состава для отобранной пробы потока природного газа и последующего расчета дебита газа на основе термобарических, термодинамических и газодинамических параметров потока, диаметров корпуса и диафрагмы ДИКТ (патент RU 2661777, Е21В 47/10, 20.07.2018).

Недостатками данного способа является высокая погрешность измерений при наличии жидкой фазы в составе продукции скважины, необходимость определения состава газа, гидравлические потери в ДИКТе, изменение диаметра диафрагмы ДИКТ при наличии твердой фазы (песка) в продукции скважин за счет эрозионного износа.

Наиболее близким аналогом заявленного изобретения является способ измерения дебитов продукции газоконденсатных и нефтяных скважин, характеризующийся подачей продукции в виде газожидкостной смеси в гидроциклонный сепаратор с конденсатосборником, предварительным накоплением жидкости в конденсатосборнике, разделением газожидкостной смеси на жидкость и газ в гидроциклонном сепараторе с последующей подачей газа на газовую трубопроводную линию, содержащую расходомер газа, и подачей жидкости на жидкостную трубопроводную линию, содержащую расходомер жидкости, определением расхода газа и жидкости с помощью расходомеров газа и жидкости, разделение газожидкостной смеси в гидроциклонном сепараторе и подачу газа и жидкости на расходомеры газа и жидкости в газовой и жидкостной трубопроводных линиях производят непрерывно, отбирают пробу газа из газовой трубопроводной линии с помощью пробозаборника, анализируют содержание конденсата в пробе газа с помощью дополнительной сепарационной установки и определяют дебиты продукции скважины с учетом содержания конденсата в газе по данным дополнительной сепарационной установки (патент RU 2532490 C1, Е21В 47/10, G01F 15/08, 10.11.2014).

Недостатками упомянутого выше технического решения являются необходимость установки на скважину дополнительного оборудования (гидроциклонный сепаратор, расходомеры жидкости и газа), гидравлические потери в установленном оборудовании, способ не может быть использован для непрерывного контроля дебита скважины из-за необходимости периодического проведения отборов проб и определения состава газожидкостной смеси.

Задачей, на которую направлено заявленное изобретение, является создание низкозатратного способа непрерывного контроля дебита газовой скважины, в составе продукции которой присутствует жидкая и твердая фазы.

Техническим результатом заявленного изобретения является:

- исключение гидравлических потерь при определении дебита газовой скважины за счет отсутствия сужающих устройств;

- упрощение и удешевление контроля дебита скважины, за счет отсутствия необходимости разделения жидкой и газовой фаз, определения состава газожидкостной смеси;

- повышение надежности процесса измерения дебита за счет использования измерительных средств, установленных вне потока газа отводимого в систему сбора газа.

Технический результат обеспечивается тем, что в способе контроля дебита газовой скважины газовую скважину переводят из рабочего режима в исследовательский режим, для чего перекрывают выход газа из газовой скважины в систему сбора газа и перенаправляют газ, выходящий из газовой скважины в устьевой трубопровод, предназначенный проведения для исследований, причем посредством расходомера, установленного на упомянутом устьевом трубопроводе фиксируют текущее значение дебита газовой скважины, а посредством устройства для измерения температуры газа, установленного на устье скважины, фиксируют соответствующее текущему дебиту значение устьевой температуры газа, после чего производят постепенное уменьшение величины дебита газовой скважины до полного останова газовой скважины, в процессе упомянутого уменьшения величины дебита газовой скважины осуществляют постоянную фиксацию значений текущего дебита газовой скважины и соответствующего ему значения устьевой температуры газа, по зафиксированным значениям строят график зависимости устьевой температуры газа от дебита газовой скважины, затем переводят газовую скважину в рабочий режим, для чего перекрывают поступление газа в упомянутый устьевой трубопровод и открывают выход газа из газовой скважины в систему сбора газа, при этом при функционировании газовой скважины в рабочем режиме фиксируют текущее значение устьевой температуры газа и по построенному графику зависимости устьевой температуры газа от дебита газовой скважины определяют значение текущего дебита газовой скважины.

Заявленное изобретение поясняется графиком, на котором приведена зависимость устьевой температуры газа от дебита газовой скважины на примере одной из газовых скважин Ямбургского месторождения (сеноманской залежи).

Способ контроля дебита газовой скважины осуществляется следующим образом.

Заявленный способ основан на эффекте влияния дебита газовой скважины на ее температурный режим. Зависимость устьевой температуры газа от дебита газовой скважины может быть определена на основе исследования скважины.

Устьевая температура газа газовой скважины определяется следующими факторами: пластовой температурой газа, эффектом Джоуля-Томпсона и теплообменом потока газа с окружающей средой в стволе газовой скважины, в фонтанной арматуре и в устьевой обвязке. При высоких (150 тыс. м3 и более) дебитах газа основные тепловые потери происходят в стволе газовой скважины за счет эффекта Джоуля-Томпсона и теплообмена с окружающим грунтом. Тепловые потери в фонтанной арматуре и обвязке газовой скважины несущественны. В этом случае для определения зависимости устьевой температуры от дебита целесообразно использовать промысловое исследование режимов работы газовой скважины.

Для проведения исследований к устьевому трубопроводу, предназначенному для проведения исследований подключают расходомер газа, а в термокарман, расположенный в трубопроводе устьевой обвязки скважины устанавливают устройство для измерения температуры газа (датчик температуры или термометр). В качестве устьевого трубопровода, предназначенного для проведения исследований может быть использован продувочный трубопровод скважины.

Газовую скважину переводят из рабочего режима в исследовательский режим, путем перекрытия газовой задвижки на линии выхода газа из газовой скважины в систему сбора газа и открытия задвижки на трубопроводе, предназначенном для проведения исследований. Таким образом, газ, выходящий из скважины, поступает не в систему сбора газа, а в трубопровод, предназначенный для проведения исследований.

Затем проводят изменение режимов работы газовой скважины, а именно: при помощи дросселирующего устройства (углового штуцера устьевой обвязки скважины или набора диафрагм в трубопроводе, предназначенном для проведения исследований (продувочного трубопровода скважины) производят постепенное уменьшение величины дебита скважин до полного останова скважины. В процессе уменьшения дебита газовой скважины осуществляют постоянную фиксацию значений текущего дебита газовой скважины и соответствующего ему значения устьевой температуры. Текущий дебит газовой скважины фиксируют посредством расходомера газа, а соответствующее текущему дебиту значение устьевой температуры газа фиксируют посредством устройства для измерения температуры газа. По зафиксированным значениям строят график зависимости устьевой температуры газа от дебита газовой скважины.

По окончании исследований газовую скважину переводят в рабочий режим, а именно: перенаправляют газ из в трубопровода, предназначенного для проведения исследований, в систему сбора газа, для чего закрывают газовую задвижку на трубопроводе, предназначенном для проведения исследований, и открывают газовую задвижку на линии выхода газа из газовой скважины в систему сбора газа.

При функционировании газовой скважины в рабочем режиме определяют текущий дебит газовой скважины следующим образом:

- фиксируют текущее значение устьевой температуры газовой скважины;

- на графике зависимости устьевой температуры газовой скважины от ее дебита, построенном на этапе исследований, находят значение температуры, соответствующее зафиксированному текущему значению устьевой температуры;

- определяют по графику значение дебита, соответствующее зафиксированному текущему значению устьевой температуры.

Таким образом, в процессе эксплуатации газовой скважины осуществляют простой и надежный контроль за текущим дебитом газовой скважины.

Пример осуществления заявленного способа.

На одной из газовых скважин Ямбургского месторождения (сеноманской залежи) проводили исследования на предмет влияния дебита скважины на ее температурный режим.

Скважина оборудована расходомером газа и датчиком устьевой температуры. В составе продукции скважины присутствует жидкая фаза (пластовая и конденсационная вода).

В процессе эксплуатации скважины в течение года фиксировали значения дебита, а также фиксировали значение устьевой температуры газовой скважины. По результатам наблюдений было определено влияние дебита скважины на устьевую температуру и построен график зависимости устьевой температуры газовой скважины от ее дебита, позволяющий в дальнейшем определять дебит скважины по измеренной устьевой температуре без использования расходомера газа (см. график).

Промысловые исследования показали, что заявленный способ может использоваться для обеспечения контроля дебита газовой скважины в условиях присутствия жидкой фазы в потоке без применения сепарации, расходомеров газа, отбора проб и определения состава газожидкостной смеси.

Способ контроля дебита газовой скважины, в котором газовую скважину переводят из рабочего режима в исследовательский режим, для чего перекрывают выход газа из газовой скважины в систему сбора газа и перенаправляют газ, выходящий из газовой скважины, в устьевой трубопровод, предназначенный для проведения исследований, причем посредством расходомера, установленного на упомянутом устьевом трубопроводе, фиксируют текущее значение дебита газовой скважины, а посредством устройства для измерения температуры газа, установленного на устье скважины, фиксируют соответствующее текущему дебиту значение устьевой температуры газа, после чего производят постепенное уменьшение величины дебита газовой скважины до полного останова газовой скважины, в процессе упомянутого уменьшения величины дебита газовой скважины осуществляют постоянную фиксацию значений текущего дебита газовой скважины и соответствующего ему значения устьевой температуры газа, по зафиксированным значениям строят график зависимости устьевой температуры газа от дебита газовой скважины, затем переводят газовую скважину в рабочий режим, для чего перекрывают поступление газа в упомянутый устьевой трубопровод, и открывают выход газа из газовой скважины в систему сбора газа, при этом при функционировании газовой скважины в рабочем режиме фиксируют текущее значение устьевой температуры газа и по построенному графику зависимости устьевой температуры газа от дебита газовой скважины определяют значение текущего дебита газовой скважины.



 

Похожие патенты:

Изобретение относится к области нефтедобывающей промышленности и может быть использовано в различных устройствах, переключающих потоки жидкостей, в частности к устройствам, замеряющим дебит нефтяных скважин. Переключатель потока жидкости содержит корпус с входным и выходным патрубком, измерительный патрубок, канал измерения, крышку с установленным на ней мотор-редуктором при автоматическом перемещении затвора или валом с шестерней и маховиком при ручном перемещении затвора.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке сложнопостроенных карбонатных нефтяных залежей, характеризующихся анизотропией проницаемости горных пород. Предлагаемый способ определения дебита скважин с учетом анизотропии проницаемости горных пород включает определение обводненности продукции (W); газовый фактор (Гф); толщину пласта (h); глубину вскрытого интервала (Нвск); коэффициент пористости (kпор); затрубное давление (Рзатр); пластовое давление (Рпл); забойное давление (Рзаб); скин-фактор (S); вязкость нефти (μ); значение горизонтальной (kгор) и вертикальной (kверт) проницаемостей.

Изобретение относится к горной промышленности, а именно к исследованию газовых, газо-конденсатных и нефтяных скважин, и предназначено для исследования дебета скважин. Предложен диафрагменный измеритель критических течений, который содержит корпус с резьбой для установки устройства на скважине, закрепленную на корпусе диафрагму, резьбовой патрубок для направления среды к измерительному прибору, при этом корпус выполнен сварным, состоящим из цилиндрической части и привариваемого к цилиндрической части торцевого фланца с овальным отверстием, больший размер которого меньше внутреннего диаметра цилиндрической части корпуса, и с внутренней овальной проточкой на глубину толщины диафрагмы, а диафрагма выполнена овальной и размещена в проточке.
Изобретение относится к нефтегазодобывающей промышленности, в частности к разработке месторождений нефти с перетоками воды и/или нефти из разных уровней. Способ разработки нефтяной залежи с межпластовыми перетоками, включающий отбор нефти через добывающие скважины, закачку воды через нагнетательные скважины, замер добычи жидкости, ее обводненности и добычи нефти в продуктивном пласте, выявление скважин, добывающих избыточную воду, источников обводнения скважин.

Изобретение относится к способам заканчивания скважин. Заявлен способ для использования при установке узла для заканчивания скважины в ствол скважины за один спускоподъемный рейс в ствол скважины.

Группа изобретений относится к добыче многофазных и/или многокомпонентных флюидов из нефтегазовых скважин и предназначено для проведения измерений основных параметров потока добываемого флюида в рабочих условиях во время добычи. Система содержит по меньшей мере одно основное измерительное устройство, установленное на линии потока добываемого из скважины флюида и предназначенное для измерений параметров потока добываемого флюида, устройство для изменения параметров потока добываемого флюида, подключенное к линии потока добываемого флюида, и по меньшей мере одно дополнительное измерительное устройство, подключенное к линии потока добываемого флюида и предназначенное для измерения измененных параметров потока добываемого флюида.

Изобретение относится к нефтегазовой сфере, в частности - для добывающих и нагнетательных скважин, эксплуатируемых одного или одновременно нескольких нефтегазоносных пластов, в качестве системы, измеряющей или регистрирующей основные параметры потока флюида, а также управляющей дебитом посредством изменения площади проходного канала.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для измерения дебита скважин. Техническим результатом изобретения является повышение точности измерения дебита нефтяных скважин.

Изобретение относится к области измерения расхода многокомпонентных газожидкостных потоков, а именно к способу измерения дебита газоконденсатной скважины, и может быть использовано в сфере обслуживания газоконденсатных скважин. Техническим результатом является обеспечение упрощенного измерения расхода компонентов нестабильного газового конденсата с использованием единого параметра идентификации компонента.

Изобретение относится к нефтедобывающей промышленности и может быть использовано как способ отбора жидких углеводородов и закачки вытесняющих агентов, например воды, углекислого газа, водогазовых смесей, теплоносителей и др., при организации гидродинамического воздействии на пласт с целью достижения максимального эффекта от изменения кинематики потоков в системе скважин.

Изобретение относится к способам для интенсификации добычи нефти и закачки воды. Технический результат - возможность установления гидродинамической связи в условиях низкопроницаемого пласта, высокой вязкости и неоднородности, плотной кольматации пласта в прискважинной зоне.
Наверх