Высокотемпературный датчик для вихревых расходомеров

Изобретение относится к вихревым расходомерам жидкости, газа или пара, в частности к датчикам изгибающего момента, для регистрации частоты вихрей, образующихся в потоке жидкости, газа или пара за телом обтекания. Отличительная особенность данного датчика для вихревых расходомеров заключается в том, что согласно изобретению донышко представляет собой мембрану, диаметр которой равен внутреннему диаметру донышка, соединенное с внешней поверхностью донышка клиновидное крыло у своего утолщенного основания в месте соединения с донышком имеет цилиндрическую шейку, диаметр которой не превышает 1/3 внутреннего диаметра донышка, с внутренней стороны донышко в своем центре соединено с фиксатором пьезоэлектрического узла, имеющим поперечный размер, не превышающий 1/3 внутреннего диаметра донышка, и высоту, не превышающую 1/5 длинной стороны пьезоэлектрических пластин, пьезоэлектрический узел представляет собой кольцевой пьезоэлемент с разделенным верхним электродом на два симметричных полукольца, расположенный на мембране, фиксатор пьезоэлектрического узла расположен в центральном отверстии кольцевого элемента, ось симметрии полуколец верхнего электрода параллельна плоскости симметрии клиновидного крыла, а два других пьезоэлектрических элемента, представляющих собой прямоугольные пьезопластины, закреплены с двух сторон фиксатора пьезоэлектрического узла, причем плоскости пьезопластин параллельны плоскости симметрии клиновидного крыла. Технический результат - повышение уровня чувствительности и собственной резонансной частоты механических колебаний корпуса датчика за счет изменения конструкции корпуса в отношении сокращения длины его колеблющейся части и узла фиксации пьезоэлектрических пластин для более эффективной трансформации изгибных деформаций мембраны в изгибные деформации пьезоэлектрических пластин; также технический результат заключается в возможности компенсации пироэффекта за счет введения дополнительного пьезоэлемента из того же пьезоэлектрика, что и остальные пьезоэлементы. 2 ил., 1 табл.

 

Изобретение относится к вихревым расходомерам жидкости, газа или пара, в частности - к датчикам изгибающего момента, используемых и предназначенных для регистрации частоты вихрей, образующихся в потоке жидкости, газа или пара за телом обтекания.

Известен асимметричный датчик для высокотемпературных вихревых расходомеров (см. патент RU 2688876, МПК H01L41/08, опуб. 15.08.2016), имеющий наружную пластину, один конец которой прикреплен к торцу цилиндрического корпуса, другой конец свободен, а толщина пластины линейно уменьшается от закрепленного конца к свободному с углом между плоскостями, равным 2…4°, воспринимающую переменный изгибающий момент силы давления со стороны вихрей и вызывающую переменные деформации корпуса, и один или несколько пьезоэлектрических элементов, находящихся в полости корпуса и преобразующих изгибающий момент в переменный электрический сигнал, частота которого равна частоте появления вихрей, отличающийся тем, что, с целью расширения температурного диапазона за счет использования высокотемпературных пьезоматериалов, характеризующихся малыми значениями пьезомодуля d31, но приемлемыми значениями пьезомодуля d33, геометрия преобразователя изменяется так, чтобы его чувствительный элемент имел вид набора соосных пьезоэлектрических дисков, поляризованных по толщине и установленных в цилиндрической полости, ось которой смещена относительно плоскости наружной пластины, благодаря чему изгибные деформации этой пластины, передающиеся через мембрану, вызывают напряжения сжатия-растяжения вдоль оси пьезоэлектрических дисков, преобразующиеся в электрический сигнал, пропорциональный пьезомодулю d33, выводимый посредством кабеля к приборам, фиксирующим его частоту.

Такое техническое решение имеет недостатки. Основной недостаток заключается в невысокой чувствительности датчика, что обусловлено нарушением симметрии конструкции. В результате такого нарушения симметрии, изгибающий момент силы давления со стороны вихрей и вызывающий переменные деформации корпуса, будет воздействовать на набор пьезоэлектрических дисков, преимущественно вызывая напряжения сжатия при отклонении наружной пластину в одну из сторон и изгибании мембраны, тогда как при отклонении наружной пластины в другую сторону напряжения растяжения на набор дисков оказываться не будет. В этом случае лишь будет ослабевать напряжение сжатия. Таким образом, эффективность работы такой конструкции оказывается, по крайней мере, вдвое ниже в сравнении с симметричным конструктивным решением. Другой недостаток связан с паразитным сигналом, искажающим полезные сигналы, обусловленным наличием пироэлектрического эффекта, проявляющегося при вариациях температуры.

Известен также датчик для вихревых расходомеров (Piezo Sensor for Vortex Flowmeter, «Tms Electronic Co. Ltd», Anhui, China.), содержащий полый цилиндрический металлический корпус, оканчивающийся с одной стороны клиновидным крылом, а с другой стороны герметичным вводом с коаксиальным кабелем, имеющим экранный и центральный проводники, соединенные с пьезоэлектрическим узлом, расположенным внутри корпуса.

Такое техническое решение также не лишено недостатков. Основной недостаток заключается в невысокой чувствительности датчика, приведенной в описании технических характеристик (https://tmselec.en.ec21.com/Piezo_Sensor_for_Vortex_Flowmeter--4083813_4083855.html). Другой недостаток - это низкая собственная резонансная частота механических колебаний корпуса датчика, обусловленная его геометрией (длинной консольной части корпуса, выходящей в измеряемый поток). Еще один недостаток связан с появлением паразитных сигналов в следствие наличия пироэффекта, которые искажают полезные сигналы при вариациях температуры.

Наиболее близким к заявляемому техническому решению является датчик для высокотемпературных вихревых расходомеров (см. патент RU 2608331, МПК G01F1/32, опуб. 17.01.2017), содержащий наружную пластину, прикрепленную к торцу цилиндрического корпуса, воспринимающую переменный изгибающий момент силы давления со стороны вихрей и вызывающую переменные деформации корпуса, и пьезоэлектрический элемент в виде полого цилиндра из пьезоэлектрической керамики, поляризованной в радиальном направлении, установленный в полости корпуса и жестко связанный с ним, причем наружная цилиндрическая поверхность пьезоэлемента покрыта сплошным электродом, а на внутренней поверхности электрод разрезан на две части вдоль образующей по плоскости, совпадающей с плоскостью наружной пластины, благодаря чему между внутренними электродами возникает переменный электрический сигнал с частотой вихреобразования, пропорциональной скорости потока, снимаемый посредством кабеля, сигнальные проводники которого соединены с внутренними электродами пьезоэлемента, во внутреннюю полость пьезоэлемента введены контактные элементы в виде двух цилиндрически изогнутых металлических пластинок, предварительно сваренных с проводниками кабеля, отделенных друг от друга пластинкой изолятора, прижимаемых к внутренним электродам пьезоэлемента силами упругости, обеспечивающими электрический контакт электродов пьезоэлемента с линией связи.

Данное техническое решение также имеет недостатки. Одним из недостатков является не достаточно высокая чувствительность датчика, что, очевидно, связано с использованием полого цилиндра из пьезоэлектрической керамики, имеющего более устойчивую геометрию в отношении осевого изгиба в сравнении, например, с прямоугольными элементами.

Другим недостатком является то, что изгибающий момент силы давления со стороны вихрей Кармана, образовывающихся за телом обтекания в потоке среды, воспринимаемый наружной пластиной, прикрепленной к корпусу, приходится на срединную область цилиндрического корпуса, во внутренней полости которого расположен пьезоэлектрический элемент в виде полого цилиндра из пьезоэлектрической керамики. При этом собственная резонансная частота механических колебаний определяется и ограничивается сверху суммарной длиной наружной пластины и части корпуса от плоскости его фиксации до свободного конца наружной пластины. Это, в свою очередь, является причиной ограничения верхнего предела динамического диапазона измеряемых расходов (https://www.piezoelectric.ru/Products/FlowSensors/SensorsBendingMoment.php).

Еще одним недостатком данного датчика является искажение полезного сигнала вследствие пироэффекта, проявляющегося при вариациях температуры.

Техническая проблема заключается в разработке датчика для вихревых расходомеров, способного работать при высоких температурах и давлениях измеряемой среды протекающих потоков жидкости и газа и имеющего высокую чувствительность и повышенную собственную резонансную частоту механических колебаний корпуса, что расширит динамический диапазон измеряемых расходов и имеющего элемент, позволяющий компенсировать влияние пироэффекта.

Диапазон измеряемых частот колебаний клиновидного крыла датчика, обусловленных воздействием вихрей движущейся среды, лежит на участке частот от единиц, или десятков герц до 2-3 килогерц. Амплитуды этих колебаний существенно меньше амплитуды колебаний корпуса на собственных резонансных частотах. Поэтому перекрытие диапазона измеряемых частот и частоты собственного резонанса приводят сбою в работе расходомера и, соответственно, к ограничению динамического диапазона измеряемых расходов. По этой причине желательно, чтобы собственная резонансная частота колебаний корпуса датчика была бы значительно выше максимальных измеряемых частот.

При вариациях температуры, вследствие пироэлектрического эффекта, присутствующего в пьезоэлектрических материалах наряду с пьезоэффектом, на электродах пьезоэлементов появляются дополнительные электрические заряды, искажающие полезный сигнал.

Технический результат заключается в повышении уровня чувствительности и собственной резонансной частоты механических колебаний корпуса датчика за счет изменения конструкции корпуса в отношении сокращения длины его колеблющейся части и узла фиксации пьезоэлектрических пластин для более эффективной трансформации изгибных деформаций мембраны в изгибные деформации пьезоэлектрических пластин; также технический результат заключается в возможности компенсации пироэффекта за счет введения дополнительного пьезоэлемента из того же пьезоэлектрика, что и остальные пьезоэлементы.

Технический результат заявляемого решения достигается тем, что в высокотемпературном датчике для вихревых расходомеров, содержащем полый цилиндрический металлический корпус, оканчивающийся с одной стороны донышком, соединенным с клиновидным крылом, а с другой стороны герметичным вводом с четырьмя коаксиальными кабелями, имеющими экранные и центральные проводники, соединенные с пьезоэлектрическим узлом, включающем пьезоэлектрические элементы, расположенные внутри корпуса и поляризованные по толщине, имеющие металлизированные по плоскостям поверхности и закрепленные с корпусом, согласно изобретению донышко представляет собой мембрану, диаметр которой равен внутреннему диаметру донышка, соединенное с внешней поверхностью донышка клиновидное крыло у своего утолщенного основания в месте соединения с донышком имеет цилиндрическую шейку, диаметр которой не превышает 1/3 внутреннего диаметра донышка, с внутренней стороны донышко в своем центре соединено с фиксатором пьезоэлектрического узла, имеющим поперечный размер, не превышающий 1/3 внутреннего диаметра донышка и высоту, не превышающую 1/5 длинной стороны пьезоэлектрических пластин, пьезоэлектрический узел представляет собой кольцевой пьезоэлемент с разделенным верхним электродом на два симметричных полукольца, расположенный на мембране, фиксатор пьезоэлектрического узла расположен в центральном отверстии кольцевого элемента, ось симметрии полуколец верхнего электрода параллельна плоскости симметрии клиновидного крыла, а два других пьезоэлектрических элемента, представляющих собой прямоугольные пьезопластины, закреплены с двух сторон фиксатора пьезоэлектрического узла, причем плоскости пьезопластин параллельны плоскости симметрии клиновидного крыла.

Изобретение поясняется чертежами, где:

- на фиг.1 показана общая конструкция заявляемого изобретения; датчик установлен в измерительной трубе, виды сбоку и по оси трубы;

- на фиг.2 показан кольцевой элемент конструкция датчика; вид сверху, при котором ось датчика нормальна поверхности рисунка.

На чертежах позициями обозначено:

1 – металлический корпус,

2 – донышко,

3 – клиновидное крыло,

4 – измерительная труба,

5 – герметичный ввод,

6 – коаксиальный кабель,

7 – экранный проводник,

8 – центральный проводник,

9 – пьезоэлектрический узел,

10 – пьезоэлектрические пластины,

11 – пьезоэлектрическое кольцо,

12 – цилиндрическая шейка,

13 – фиксатор пьезоэлектрического узла,

14 – тело обтекания,

15 – полукольца верхнего электрода.

Высокотемпературный датчик для вихревых расходомеров, содержащий полый цилиндрический металлический корпус 1, оканчивающийся с одной стороны донышком 2, соединенным с клиновидным крылом 3, выходящим в измерительную трубу 4, а с другой стороны герметичным вводом 5 с четырьмя коаксиальными кабелями 6, имеющими экранные 7 и центральные 8 проводники, соединенные с пьезоэлектрическим узлом 9, расположенным внутри корпуса 1, включающем пьезоэлектрические элементы 10 и 11, расположенные внутри корпуса 1 и поляризованные по толщине, имеющие металлизированные по плоскостям поверхности и закрепленные с корпусом 1 по двум своим узким сторонам, донышко 2 представляет собой мембрану, диаметр которой равен внутреннему диаметру донышка 2, соединенное с внешней поверхностью донышка 2 клиновидное крыло 3 у своего утолщенного основания в месте соединения с донышком 2 имеет цилиндрическую шейку 12, диаметр которой не превышает одной третьей внутреннего диаметра донышка 2, с внутренней стороны донышко 2 в своем центре соединено с фиксатором 13 пьезоэлектрического узла 9, имеющим поперечный размер, не превышающий одной третьей внутреннего диаметра донышка 2 и высоту, не превышающую одной пятой длинной стороны пьезоэлектрических пластин 10, пьезоэлектрический узел 9 представляет собой кольцевой пьезоэлемент 11 с разделенным верхним электродом на два симметричных полукольца 15, расположенный на мембране 2, фиксатор 13 пьезоэлектрического узла 9 расположен в центральном отверстии кольцевого элемента 11, ось симметрии полуколец 15 верхнего электрода параллельна плоскости симметрии клиновидного крыла 3, а два других пьезоэлектрических элемента, представляющих собой прямоугольные пьезопластины 10, закреплены с двух сторон фиксатора 13 пьезоэлектрического узла 9, причем плоскости пьезопластин параллельны плоскости симметрии клиновидного крыла 3.

В измерительной трубе 4 перед клиновидным крылом 3 датчика в движущемся потоке измеряемых жидкости или газа, расположено тело обтекания 14, являющееся источником вихревых образований (вихрей Кармана), создающих попеременное (с каждой плоскости крыла 3) давление на крыло 3 датчика с частотой, пропорциональной скорости движения потока жидкости или газа.

Устройство работает следующим образом.

Датчик устанавливается в измерительной трубе 4 за телом обтекания 14 по ходу жидкостного или газового потока так, что плоскость симметрии, делящая пополам клин клиновидного крыла 3, оказывается параллельной оси измерительной трубы 4. Периодическая последовательность вихрей (см. фиг.1), возникающих в измерительной трубе 4 за телом обтекания 14, вызывает поочередно давление на каждую из плоскостей клиновидного крыла 3 датчика изгибающего момента с частотой, равной обратному значению периода колебаний крыла 3 и пропорциональной скорости движения измеряемого жидкостного или газового потока. Колебания крыла 3 вызывают изгибные деформации мембраны, являющейся частью донышка 2 датчика и посредством фиксатора пьезоэлектрического узла 13 (см. фиг.2) передаются пьезоэлектрическим пластинам 10 и пьезоэлектрическому кольцу 11, вызывая их изгибные деформации. Изгибные деформации пьезопластин 10 и пьезокольца 11, вследствие пьезоэффекта, индуцируют появление электрических зарядов на металлизированных поверхностях пьезопластин 10 и пьезокольца 11, металлизированные поверхности каждой из которых электрически соединены с экранным 7 и сигнальным 8 проводниками коаксиальных кабелей 6.

Электрическое напряжение, снимаемое с выходов датчика, определяется отношением индуцированного заряда к суммарной ёмкости пьезоэлектрических пластин 10 и выводных кабелей 6, или отношением индуцированного заряда к суммарной ёмкости пьезоэлектрического кольца и выводных кабелей 6. Переменное электрическое напряжение, снимаемое с двух каналов датчика, связанных с плоскими прямоугольными пьезоэлементами может использоваться для определения частоты колебаний клиновидного крыла и, соответственно, для определения скорости потока жидкости, или газа и их расхода, а переменной напряжение, снимаемое с двух других каналов, связанных с кольцевым пьезоэлементом, может использоваться для компенсации пироэлектрического эффекта, или для параллельного измерения частоты колебаний клиновидного крыла и, как следствие, для повышения чувствительности датчика и точности измерений.

Пример конкретного исполнения.

Корпус датчика, изготовленный из титана, имеет клиновидное крыло длиной 25 мм. Полый цилиндрический канал корпуса датчика имеет диаметр 17 мм и глубину 14мм, равную длине пьезокерамических пластин. Ширина пьезокерамических пластин равна 4мм. Толщина пьезопластин равна 0.5 мм Диаметр цилиндрической шейки клиновидного крыла выбран равным 4 мм. Внутренний диаметр донышка равен 12 мм, а его толщина 1мм. Высота фиксатора пьезоэлектрического узла выбрана равной 2.5 мм. Внешний диаметр пьезоэлектрического кольца равен внутреннему диаметру мембраны и равен16 мм, внутренний диаметр пьезоэлектрического кольца превышает диаметр цилиндрической шейки и равен 5 мм. Толщина пьезоэлектрического кольца равна 0.5 мм.

Фиксация пьезопластин в корпусе датчика осуществляется высокотемпературным клеящим веществом.

Присоединение экранного и центрального проводников коаксиальных кабелей к металлизированным поверхностям пьезопластин может быть реализовано, например, с помощью точечной микросварки; в данном примере это присоединение осуществляется высокотемпературным припоем.

Эффективность работы датчика изгибающего момента во многом определяется, наряду со свойствами пьезокерамических элементов, его геометрическими характеристиками, а также упругими свойствами применяемых материалов. В частности, использование осесимметричной дисковой мембраны для трансформации изгибных колебаний клиновидного крыла в изгибные колебания пьезоэлектрического кольца и пьезоэлектрических пластин, позволяет увеличить чувствительность датчика в сравнении с конструкцией, используются изгибные колебания цилиндрического корпуса датчика. Толщина мембраны, для данного технического решения не превосходящая 1/10 её диаметра, выбрана исходя из экспериментальных данных по оптимизации геометрических характеристик корпуса датчика. Оптимизация проводилась по коэффициенту преобразования механических напряжений в электрические, при сохранении прочностных характеристик донышка. Цилиндрическая шейка клиновидного крыла, соединенная с донышком с внешней стороны, а также фиксатор пьезоэлектрического узла, соединенный с донышком с внутренней стороны, имеют близкие поперечные размеры, не превышающие 1/3 внутреннего диаметра донышка. Данный параметр также выявлен экспериментальным путем и определяет соотношение размеров между нагруженным участком мембраны, соединяющим механически шейку клиновидного крыла, мембрану, фиксатор пьезоэлектрического узла и свободным участком мембраны, подвергающемся изгибным колебаниям. При таком соотношении размеров нагруженный участок обеспечивает надежную фиксацию пьезоэлектрического узла и, в то же время, свободный участок обеспечивает амплитуду колебаний мембраны, близкую к максимальной. Высота фиксатора пьезоэлектрического узла выбрана не превышающей 1/5 длинной стороны пьезоэлектрической пластины. Это значение, как показывают эксперименты, оказывается достаточным для жесткой фиксации концов пьезоэлектрических пластин с мембраной и с клиновидным крылом и, в то же время, центральная часть пьезоэлектрической пластины, свободная от внешней механической нагрузки имеет достаточную площадь для трансформации в электрический сигнал изгибающего момента, передаваемого от изгибающейся мембраны при отклонении от срединного положения клиновидного крыла под воздействием давления со стороны вихрей движущегося измеряемого потока.

Материал пьезоэлектрического кольца выбран идентичным материалу пьезоэлектрических пластин для более точной коррекции пироэлектрического эффекта.

В таблице 1 приведено сопоставление экспериментальных характеристик заявляемого устройства и опубликованных данных по характеристикам прототипа и одного из аналогов.

С целью наибольшей корректности сопоставлений для эксперимента были изготовлены образцы заявляемого устройства с длиной клиновидного крыла и типом используемой пьезокерамики, соответствующих прототипу. Рабочая температура сопоставляемых образцов также выбрана идентичной 350º С.

Таблица 1

Характе -
ристика
Датчик
Длина клиновидного крыла, мм Тип керамики Рабочая температура,
° С
Чувстви-
тель-ность, мВ/г
Чувствительность, нК/Нм Резонансная Частота, кГц Компенсация пироэффекта
Заявляемое устройство 25 ЦТС 21 350 32 80 6.0 есть
Протопип 108МТ (ООО «Пьезоэлектрик» Ростов-на Дону) 25 ЦТС 21 350 12 30 3.1 нет
Аналог Piezoelectric sensor for vortex flowmeter («Tms Electronic Co. Ltd», China.) 25 - 350 0.1 0.25 2.2 нет

Из таблицы 1 видно, что при прочих идентичных параметрах (рабочая температура, длина клиновидного крыла, наличие компенсации пироэффекта), характеристики заявляемого устройства выгодно отличаются от прототипа и от аналога. Чувствительность заявляемого устройства в 2.5 раза выше в сравнении с прототипом и более, чем в 300 раз выше в сравнении с аналогом. Собственная резонансная частота механических колебаний у заявляемого устройства в два раза превышает таковую у прототипа и в 2.7 раза превышает резонансную частоту аналога. Кроме того у заявляемого устройства, в отличие от аналога и прототипа, имеется возможность компенсации пироэлектрического эффекта.

Высокотемпературный датчик для вихревых расходомеров, содержащий полый цилиндрический металлический корпус, оканчивающийся с одной стороны донышком, соединенным с клиновидным крылом, а с другой стороны герметичным вводом с четырьмя коаксиальными кабелями, имеющими экранные и центральные проводники, соединенные с пьезоэлектрическим узлом, включающим пьезоэлектрические элементы, расположенные внутри корпуса и поляризованные по толщине, имеющие металлизированные по плоскостям поверхности и закрепленные с корпусом, отличающийся тем, что донышко представляет собой мембрану, диаметр которой равен внутреннему диаметру донышка, соединенное с внешней поверхностью донышка клиновидное крыло у своего утолщенного основания в месте соединения с донышком имеет цилиндрическую шейку, диаметр которой не превышает 1/3 внутреннего диаметра донышка, с внутренней стороны донышко в своем центре соединено с фиксатором пьезоэлектрического узла, имеющим поперечный размер, не превышающий 1/3 внутреннего диаметра донышка, и высоту, не превышающую 1/5 длинной стороны пьезоэлектрических пластин, пьезоэлектрический узел представляет собой кольцевой пьезоэлемент с разделенным верхним электродом на два симметричных полукольца, расположенный на мембране, фиксатор пьезоэлектрического узла расположен в центральном отверстии кольцевого элемента, ось симметрии полуколец верхнего электрода параллельна плоскости симметрии клиновидного крыла, а два других пьезоэлектрических элемента, представляющих собой прямоугольные пьезопластины, закреплены с двух сторон фиксатора пьезоэлектрического узла, причем плоскости пьезопластин параллельны плоскости симметрии клиновидного крыла.



 

Похожие патенты:

Изобретение относится к вихревым расходомерам жидкости, газа или пара, в частности – к датчикам изгибающего момента, для регистрации частоты вихрей, образующихся в потоке жидкости, газа или пара за телом обтекания. Отличительная особенность данного датчика для вихревых расходомеров заключается в том, что согласно изобретению донышко представляет собой мембрану, диаметр которой равен внутреннему диаметру донышка и превосходит её толщину, по крайней мере, в 10 раз, клиновидное крыло в месте соединения с донышком имеет цилиндрическую шейку, диаметр которой не превышает 1/3 внутреннего диаметра донышка, с внутренней стороны донышко соединено с фиксатором пьезоэлектрического узла, имеющим поперечный размер, не превышающий 1/3 внутреннего диаметра донышка и высоту, не превышающую 1/5 длинной стороны пьезоэлектрических пластин.

Изобретение относится к высокотемпературным датчикам изгибающего момента в вихревых расходомерах, для регистрации частоты вихрей за телом обтекания, пропорциональной скорости потока жидкости, пара или газа. Отличительной особенностью датчика согласно изобретению является то, что пьезоэлектрический диск своей полностью металлизированной поверхностью непосредственно прилегает к донышку, поверхностью с разделенными электродами прилегает к поверхности впеченных электродов переходного фиксатора, выполненного из высокотемпературной керамики с двумя впеченными электродами со стороны торца, обращенного к пьезоэлектрическому диску, и с другого торца впеченными коаксиально расположенными металлической шайбой и керамической трубкой, имеющей два канала с металлическими проволоками, соединенными с впеченными электродами, а с другого конца соединенные с сигнальными проводниками экранированного кабеля, экранный проводник экранированного кабеля соединен электрически с корпусом датчика, каждый из впеченных электродов соединен с одним из электродов пьезоэлектрического диска, между переходным фиксатором и нижней герметизирующей втулкой в корпусе на резьбовом соединении размещена прижимная втулка, а на внутренней поверхности цилиндрического корпуса и на внешней поверхности переходного фиксатора выполнены совмещаемые пазы, параллельные оси датчика, в которые установлена фиксирующая шпонка.

Изобретение относится к вихревым расходомерам, которые используются в области управления промышленным процессом для измерения расхода текучей среды. Вихревой расходомер содержит: проточную трубу, сконфигурированную, чтобы принимать поток технологической текучей среды в первом направлении; плохообтекаемое тело, расположенное в проточной трубе между первым концом и вторым концом, сконфигурированное, чтобы формировать завихрения в потоке технологической текучей среды; первую пару датчиков, содержащую первую пару пьезоэлектрических кабелей, расположенных внутри отверстий в плохообтекаемом теле вблизи первой стороны плохообтекаемого тела и разнесенных вдоль первой стороны, причем первая пара датчиков сконфигурирована, чтобы обнаруживать деформации в плохообтекаемом теле, возникающие в результате завихрений, действующих на первой стороне плохообтекаемого тела; и вторую пару датчиков, содержащую вторую пару пьезоэлектрических кабелей, расположенных внутри отверстий в плохообтекаемом теле вблизи второй стороны плохообтекаемого тела и разнесенных вдоль второй стороны, причем вторая пара датчиков сконфигурирована, чтобы обнаруживать деформации в плохообтекаемом теле, возникающие в результате завихрений, действующих на второй стороне плохообтекаемого тела.

Изобретение относится к вихревым расходомерам, которые используются в области управления промышленным процессом для измерения расхода текучей среды. Вихревой расходомер содержит: проточную трубу, сконфигурированную, чтобы принимать поток технологической текучей среды в первом направлении; плохообтекаемое тело, расположенное в проточной трубе между первым концом и вторым концом, сконфигурированное, чтобы формировать завихрения в потоке технологической текучей среды; первую пару датчиков, содержащую первую пару пьезоэлектрических кабелей, расположенных внутри отверстий в плохообтекаемом теле вблизи первой стороны плохообтекаемого тела и разнесенных вдоль первой стороны, причем первая пара датчиков сконфигурирована, чтобы обнаруживать деформации в плохообтекаемом теле, возникающие в результате завихрений, действующих на первой стороне плохообтекаемого тела; и вторую пару датчиков, содержащую вторую пару пьезоэлектрических кабелей, расположенных внутри отверстий в плохообтекаемом теле вблизи второй стороны плохообтекаемого тела и разнесенных вдоль второй стороны, причем вторая пара датчиков сконфигурирована, чтобы обнаруживать деформации в плохообтекаемом теле, возникающие в результате завихрений, действующих на второй стороне плохообтекаемого тела.

Изобретение относится к измерительной технике и может быть применено в вихревых расходомерах для измерения объемного расхода с использованием вихрей Кармана. Сборка чувствительного элемента 11 выполнена внутри тонкостенного металлического стаканчика 19 и состоит из пьезоэлемента 21 в виде плоского диска с отверстием, имеющего электроды на нижней и верхней поверхностях, металлического контакта 22 и изолятора 23 внутри стаканчика 19, кабеля 7 с загибом 24 на конце и прижатым к металлическому контакту 22.

Изобретение относится к вихревым расходомерам жидкости, газа или пара, в частности к датчикам изгибающего момента, используемым и предназначенным для регистрации частоты вихрей, образующихся в потоке жидкости, газа или пара за телом обтекания. В датчике изгибающего момента для вихревых расходомеров жидкости или газа, содержащем полый цилиндрический металлический корпус, оканчивающийся с одной стороны донышком, соединенным с клиновидным крылом, а с другой стороны герметичным вводом с двумя или более коаксиальными кабелями, имеющими экранные и центральные проводники, соединенные с пьезоэлектрическим узлом, расположенным внутри корпуса и представляющим собой по крайней мере одну пару пьезоэлектрических пластин с параллельно расположенными плоскостями, поляризованных по толщине и имеющих металлизированные поверхности, согласно решению каждая из пьезоэлектрических пластин имеет форму шестиугольника, образованного прямоугольником и квадратом, одна из сторон которого совмещена с короткой стороной прямоугольника, а другая является продолжением длинной стороны прямоугольника, так что квадрат образует выступ, являющийся продолжением металлизированной плоскости пьезоэлектрической пластины со стороны герметичного ввода, ширина выступов составляет половину ширины короткой стороны пьезоэлектрической пластины, проводники коаксиального кабеля присоединены к выступам каждой из пластин, пластины развернуты одна относительно другой на 180 градусов относительно длинной стороны и сориентированы между собой так, что выступы с проводниками оказываются расположенными со стороны герметичного ввода, причем выступ одной пластины оказывается смещенным по ширине пластины относительно выступа другой на половину ширины пластины, при этом пластины закреплены в корпусе с помощью слоя из высокотемпературного клеящего вещества так, что торцы пластин, свободные от выступов, закреплены по центру донышка корпуса вблизи клиновидного крыла, а торцы пластин с выступами и проводниками скреплены с корпусом со стороны герметичного ввода, при этом высота слоя клеящего вещества с каждого из торцов составляет не более 1/5 длины пластины, а параллельно длинной стороне пластины со стороны герметичного ввода размещен микрокапилляр, пронизывающий слой клеящего вещества.

Изобретение относится к измерительной технике, а именно к способам и средствам, предназначенным для измерения расхода жидкостей, и может быть использовано в различных отраслях народного хозяйства для целей контроля, регулирования и учета потоков среды. В частности, изобретение может быть использовано для определения расхода жидкости в скважине вихревым расходомером в условиях воздействия на него низкочастотных вибрационных нагрузок.

Изобретение относится к измерительной технике и может быть применено в вихревых счетчиках расходомерах для измерения объемного расхода с использованием вихрей Кармана. Cпособ измерения объемного расхода в вихревых расходомерах заключается в создании в измерительном канале счетчика регулярной последовательности вихрей, регистрации каждого вихря в виде электрического импульса, измерении текущих значений частоты f следования импульсов, а также температуры и давления вещества, вычислении косвенным способом текущего значения кинематической вязкости вещества ν: для жидкости - по температуре, для газа или пара - по температуре и давлению.

Изобретение относится к вихревым расходомерам жидкости, газа или пара, в частности - к датчикам изгибающего момента, используемым и предназначенным для регистрации частоты вихрей, образующихся в потоке жидкости, газа или пара за телом обтекания. В датчике изгибающего момента для вихревых расходомеров жидкости или газа, содержащем полый цилиндрический металлический корпус, оканчивающийся с одной стороны клиновидным крылом, а с другой стороны герметичным вводом с коаксиальным кабелем, имеющим экранный и центральный проводники, соединенные с пьезоэлектрическим узлом, расположенным внутри корпуса, согласно изобретению пьезоэлектрический узел представляет собой две разнесенные в пространстве параллельные металлизированные по плоскостям пьезоэлектрические пластины, которые жестко зафиксированы между собой со стороны торцов узких граней с помощью кольцевого и Н-образного фиксаторов, к металлизированным поверхностям каждой из пластин присоединены проводники коаксиального кабеля, причем сумма длины пластин и толщины кольца совпадает с глубиной цилиндрической полой части металлического корпуса, а расстояние между внешними металлизированными поверхностями пластин, ширину пластин, зазор между внутренней поверхностью металлического корпуса датчика и краем внешней металлизированной поверхности пьезоэлектрической пластины выбирают из определённых условий.

Изобретение относится к вихревому расходомеру и способу обнаружения расхода флюида. Вихревой расходомер включает в себя расходомерный трубопровод, имеющий первый конец и второй конец.
Наверх