Устройство многопозиционной фокусировки равномерного лазерного излучения для построения металлических деталей методом селективного лазерного плавления

Изобретение относится к устройству многопозиционной фокусировки равномерного лазерного излучения для построения металлической детали методом селективного лазерного плавления. Устройство содержит лазер, две коллиматорные линзы и фокусирующую линзу, отклоняющую лазерное излучение систему зеркал и объектив для фокусирования лазерного излучения в плоскости построения металлической детали. Формирователь энергии лазерного излучения устройства выполнен с возможностью преобразования гауссовского пучка лазерного излучения в пучок с П-образной равномерной интенсивностью. Одна из коллиматорных линз размещена на выходе лазерного излучения лазера. Формирователь энергии лазерного излучения и фокусирующая линза расположены между коллиматорными линзами. Фокусирующая линза закреплена с возможностью перемещения вдоль распространения лазерного излучения, а отклоняющая лазерное излучение система зеркал расположена между второй коллиматорной линзой и упомянутым объективом для фокусирования лазерного излучения. Техническим результатом изобретения является повышение производительности лазерного технологического комплекса при высоком качестве изделий и снижение эксплуатационных и энергозатрат. 2 ил.

 

Изобретение относится к устройствам для формирования лазерного излучения с линейным распределением интенсивности.

Известно устройство для формирования лазерного излучения с линейным распределением интенсивности [п. 2656429, МПК B23K 26/06, G02B 27/09, опубл. 05.06.2018, Бюл. №16]. Устройство содержит несколько источников лазерного света для формирования лазерного излучения и оптические средства для преобразования идущих от источников лазерного света лазерных излучений в лазерное излучение, которое имеет в рабочей плоскости линейное распределение интенсивности. Источники лазерного света выполнены в виде лазеров на основной моде. В устройстве каждое из идущих от источников лазерного света лазерных излучений не перекрывается само с собой. Изобретение позволяет обеспечить однородное линейное распределение интенсивности в рабочей плоскости.

Недостаток в том, что несмотря на использование лазеров на основной моде, устройство не позволяет обеспечить сравнительно однородное линейное распределение интенсивности в рабочей плоскости.

Известна оптика для лазерного излучения с изменяемым масштабом проекции [DE 102011117607 А1, МПК B23K/26/06, опубл. 02.05.2013] в которой предусмотрен коллимационный объектив и фокусирующая оптика. При этом коллимационный объектив состоит из первой подвижной группы собирательных линз, второй подвижной группы собирательных линз и третьей неподвижной или подвижной в осевом направлении группы собирательных линз. За счет сдвига первых обеих линзовых групп относительно друг друга можно устанавливать диаметр фокуса. Если третья линзовая группа также подвижна в осевом направлении, то можно также переставлять положение фокуса.

Здесь также подвижные оптические элементы лежат в коллимационной зоне, однако за счет применяемого здесь количества оптических элементов, особенно критическими являются термические проблемы при лазерной обработке материалов, такие как, например, термический сдвиг фокуса.

Известна проекционная оптика для лазерного излучения с регулируемым положением фокуса [п. 2711287, МПК B23K 26/046, B23K 26/06, опубл. 16.01.2020, бюл. №20 (прототип)], а также с регулируемым диаметром фокуса. При этом система с переменным фокусным расстоянием содержит коллиматорную оптику из первой подвижной линзы или линзовой группы с положительным фокусным расстоянием и вторую подвижную линзу или линзовую группу с отрицательным фокусным расстоянием, а также фокусирующий элемент. Первая подвижная линза или линзовая группа с положительным фокусным расстоянием служит для проекции источника рабочего лазерного луча в виртуальный промежуточный фокус и вторая подвижная линза или линзовая группа с отрицательным фокусным расстоянием служит для проекции виртуального промежуточного фокуса в бесконечность, так что фокусирующая оптика проецирует источник рабочего лазерного луча в свой главный фокус.

Недостатки изобретения состоят в том, что разработанная проекционной оптика для обработки материалов с помощью лазерного излучения, не обеспечивает быстроту и точность построения изделий и снижения эксплуатационных и энергозатрат.

Техническим результатом изобретения является повышение производительности лазерного технологического комплекса, при высоком качестве изделий и снижении эксплуатационных и энергозатрат.

Технический результат достигается тем, что в устройстве многопозиционной фокусировки равномерного лазерного излучения для построения металлической детали методом селективного лазерного плавления, содержащем лазер, две коллиматорные линзы и фокусирующую линзу, новым является то, что оно содержит формирователь энергии лазерного излучения, выполненный с возможностью преобразования гауссовского пучка лазерного излучения в пучок с П-образной равномерной интенсивностью, отклоняющую лазерное излучение систему зеркал и объектив для фокусирования лазерного излучения в плоскости построения металлической детали, при этом одна из коллиматорных линз размещена на выходе лазерного излучения лазера, а формирователь энергии лазерного излучения и фокусирующая линза расположены между коллиматорными линзами, причем фокусирующая линза закреплена с возможностью перемещения вдоль распространения лазерного излучения, а отклоняющая лазерное излучение система зеркал расположена между второй коллиматорной линзой и упомянутым объективом для фокусирования лазерного излучения.

Отличия заявляемого устройства от наиболее близкого аналога заключаются в том, что оно содержит формирователь энергии лазерного излучения, выполненный с возможностью преобразования гауссовского пучка лазерного излучения в пучок с П-образной равномерной интенсивностью, отклоняющую лазерное излучение систему зеркал и объектив для фокусирования лазерного излучения в плоскости построения металлической детали, при этом одна из коллиматорных линз размещена на выходе лазерного излучения лазера, а формирователь энергии лазерного излучения и фокусирующая линза расположены между коллиматорными линзами, причем фокусирующая линза закреплена с возможностью перемещения вдоль распространения лазерного излучения, а отклоняющая лазерное излучение система зеркал расположена между второй коллиматорной линзой и упомянутым объективом для фокусирования лазерного излучения.

Перечисленные выше отличительные от прототипа признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».

Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Сущность изобретения поясняется чертежами.

На фиг. 1 представлено устройство многопозиционной фокусировки лазерного излучения.

На фиг. 2 представлена схема преобразования интенсивности лазерного излучения.

Устройство многопозиционной фокусировки равномерного лазерного излучения для построения металлических деталей методом селективного лазерного плавления (3D печать методом SLM) (фиг. 1) состоит из лазера 1, коллиматорной линзы 2, формирователя луча 3, фокусирующей линзы 4, привода фокусирующей линзы 5, коллиматорной линзы 6, гальванометра (отклоняющая система зеркал) 7 и F-Theta объектива 8.

Устройство работает следующим образом.

Коллиматорная линза 2 монтируется на выходе оптоволоконного лазерного излучателя 1 на расстоянии, которое равно фокусному. Выходящее лазерное излучение преобразуется в направленный параллельный пучок, минимизируя его расходимость. Далее пучок попадает в формирователь 3 для преобразования распределения интенсивности лазерного луча. Преобразование гауссового пучка в пучок с П-образной равномерной интенсивностью является основной функцией системы преобразования излучения, что позволяет эффективно использовать энергию лазера и улучшить технологию изготовления деталей методом селективного лазерного плавления (SLM). Концепция работы преобразователя показана на фиг. 2. Гауссовое распределение интенсивности коллимированного пучка лазера преобразуется в плоское распределение на вершине. Выходной пучок также коллимирован и имеет приблизительно те же размеры, что и входной пучок. Затем излучение попадает в фокусирующую линзу 4, закрепленную на подвижном приводе 5, что позволяет ей перемещаться вдоль распространения лазерного луча, тем самым уменьшая или увеличивая диаметр пучка лазера.

Колиматорная линза 6 преобразует лазерное излучение в направленный параллельный пучок, падающий на отклоняющую систему зеркал гальванометра 7. На зеркала гальванометра поступает сигнал, отклоняющий луч лазера в плоскости, перпендикулярной распространению излучения. F-Theta объектив 8 фокусирует полученное излучение в плоскости построения детали в камере SLM принтера.

Таким образом, устройство многопозиционной фокусировки равномерного лазерного излучения с оптическим формирователем обеспечивает быстроту и точность построения изделий, многократное повышение производительности лазерного технологического комплекса, снижение эксплуатационных и энергозатрат при высоком качестве изделия.

Устройство многопозиционной фокусировки равномерного лазерного излучения для построения металлической детали методом селективного лазерного плавления, содержащее лазер, две коллиматорные линзы и фокусирующую линзу, отличающееся тем, что оно содержит формирователь энергии лазерного излучения, выполненный с возможностью преобразования гауссовского пучка лазерного излучения в пучок с П-образной равномерной интенсивностью, отклоняющую лазерное излучение систему зеркал и объектив для фокусирования лазерного излучения в плоскости построения металлической детали, при этом одна из коллиматорных линз размещена на выходе лазерного излучения лазера, а формирователь энергии лазерного излучения и фокусирующая линза расположены между коллиматорными линзами, причем фокусирующая линза закреплена с возможностью перемещения вдоль распространения лазерного излучения, а отклоняющая лазерное излучение система зеркал расположена между второй коллиматорной линзой и упомянутым объективом для фокусирования лазерного излучения.



 

Похожие патенты:

Изобретение относится к способу установки или вставления первой соединительной детали во вторую соединительную деталь обрабатывающей головки для термической обработки материала, соединительной детали для обрабатывающей головки для термической обработки материала (варианты) и устройству из первой соединительной детали и второй соединительной детали.

Изобретение относится к технологии ремонта охлаждаемых лопаток турбины газотурбинного двигателя и может быть использовано в турбомашиностроении. Способ включает удаление теплозащитного покрытия до основного материала, шлифовку торца пера лопатки до торцовой перемычки, удаление ее и формирование паза под установку торцовой пластины, фиксацию торцовой пластины сваркой, нанесение пасты припоя, крепление торцовой пластины к лопатке высокотемпературной пайкой в вакууме, механическую обработку, восстановление стенки колодца торца пера лазерной наплавкой, термообработку в вакууме, механическую обработку наплывов наплавки, люминесцентный контроль, восстановление теплозащитного покрытия концевой части пера лопатки.

Изобретение относится к области станкостроения и может быть использовано, в частности, в конструкции манипулятора для перемещения обрабатывающей лазерной головки и в способе его работы. Манипулятор содержит систему позиционирования с амортизаторами, основание с закрепленным на нем направляющим устройством и приводом.

Изобретение относится к способу одновременной калибровки нескольких датчиков теплового потока при помощи лазерного излучения и может быть использовано в высокоскоростных газодинамических экспериментах, в газовой динамике, в исследовании пламени и химических реакций с выделением тепла. Технический результат – повышение точности и быстроты проведения калибровки и ее упрощение.

Изобретение относится к мобильному многофункциональному лазерному комплексу для дистанционной разделительной резки массивных металлических, бетонных и комбинированных конструкций, подводной резки и ликвидации последствий углеводородных загрязнений на водной, ледовой, прибрежной и береговой поверхностях.

Изобретение относится к электроду (1) свечи зажигания. Технический результат – повышение срока службы электрода свечи зажигания.

Изобретение относится к области лазерной сварки материалов и может быть использовано в атомной, авиационной и космической промышленности, а также для создания сложного высокотехнологичного оборудования, например, в медицине. В процессе сварки деталей создают колебательное перемещение лазерного луча относительно направления перемещения лазерной оптической головки, которое осуществляют колебательным перемещением узла фокусирующей линзы.

Изобретение относится к устройству (1) для лазерной или плазменной резки деталей из листового материала, свернутого в рулон. Позиция (10) резки оснащена по меньшей мере одной головкой (11) лазерной или плазменной резки, которая перемещается в рабочей зоне (12) резки между входом (10') на позицию резки и выходом (10'') с этой позиции вдоль продольного направления X подачи указанного материала и расположена над камерой (13) для приема частиц листового материала, образующихся в процессе резки.

Изобретение относится к способу влажной лазерной очистки твердых материалов и может быть использовано в машиностроении и авиастроении для селективной очистки металлической обшивки планеров воздушных судов от лакокрасочных материалов. Тонкий слой жидкости на обрабатываемой поверхности формируют посредством плоского щелевого сопла.

Изобретение относится к производству деталей малоразмерного газотурбинного двигателя (МГТД) с тягой до 150 кгс из металлопорошковых композиций сплавов марок никелевых ВЖ159, кобальтовых ВЛК1, алюминиевых АК9ч методом селективного лазерного сплавления. Способ включает создание электронной 3D-модели детали при помощи системы твердотельного моделирования, газодинамическую сепарацию металлического порошка из жаропрочного сплава с последующей его дегазацией, послойное нанесение металлического порошка на подложку и селективное сплавление лазерным лучом слоев металлического порошка с формированием детали в защитной атмосфере.

Изобретение относится к устройству для лазерной наплавки и способу получения изделия лазерной наплавкой, в частности для Экстремальной Высокоскоростной Лазерной Наплавки (EHLA). Устройство содержит по меньшей мере три приводных колонны (2), размещенный по центру между приводными колоннами (2.1, 2.2, 2.3) держатель (1) заготовки изготавливаемого изделия и сварочную головку (22). Держатель (1) заготовки посредством множества тянуще-толкающих штанг (15) и сформированных на их концах поворотных шарниров (3, 4) соединен с возможностью перемещения по трем пространственным направлениям (x, y, z) с приводными колоннами (2.1, 2.2, 2.3). Каждая приводная колонна (2.1, 2.2, 2.3) имеет по меньшей мере одну обращенную к держателю (1) заготовки внутреннюю направляющую планку (5) с продвигаемым по ней внутренним ползуном (6) для осуществления перемещения держателя (1) заготовки по трем пространственным направлениям (x, y, z). Каждая приводная колонна (2.1, 2.2, 2.3) имеет по меньшей мере одну наружную направляющую планку (8) с проводимым по ней наружным ползуном (11) для продвижения в противоположном относительно внутреннего ползуна (6) вертикальном направлении противовеса (9). Сварочная головка (22) удерживается несущей пластиной (20). Технический результат изобретения состоит в возможности достижения высоких скоростей наплавки до 500 м/мин при высокой точности траектории относительного движения сварочной головки и изделия. 2 н. и 18 з.п. ф–лы, 7 ил.
Наверх