Зонная пластинка с субволновым разрешением

Изобретение относится к радиофизике, а именно к дифракционной квазиоптике. Зонная пластина с субволновой фокусировкой состоит из соосных чередующихся зон, выполненных из диэлектрика с показателем преломления N, с дискретом корректировки фазы, который выбирается из ряда , где М - целое четное число, и фокусным расстоянием не более длины волны используемого излучения, с фазовым профилем зонной пластины, выполненным на большем основании усеченного конуса, с высотой конуса, равной фокусному расстоянию зонной пластины, и сужающегося по направлению к фокусу зонной пластины. Зонная пластина дополнительно содержит металлическую микроразмерную сферу, расположенную на вершине его конуса. Технический результат - повышение разрешения зонной пластины, обеспечение субволновой фокусировки излучения зонной пластины. 1 ил.

 

Изобретение относится к радиофизике, а именно к дифракционной квазиоптике, и может быть использовано в качестве элемента объективов в устройствах дефектоскопии, радиовидения, ближнепольных микроскопах.

Зонные пластины с большой числовой апертурой и фокусным расстоянием порядка или меньше длины волны излучения представляют существенный интерес как в общефизическом плане, так и с точки зрения получения субволнового (сверхрелеевского) разрешения.

По-видимому, первыми зонными пластинами, используемыми для фокусировки освещающего излучения были: зонная пластинка Френеля, способность которой формировать изображение была отмечена Ш. Соре в 1875 году [Soret J.L. Concerning diffraction by circular gratings // Ann. Phys. Chem. - 1875. - v. 24. - p. 429-451.] и фазовая зонная пластинка с прямоугольным профилем, изготовленная Р. Вудом в 1898 году [Wood R.W. Phase reversed zone plates and diffraction telescopes // Phil. Magazine. - 1898. - v. 24, Ser. 5. - p. 511-522].

Принцип действия зонной пластинки основан на дифракционных явлениях при дифракции волны на зонах зонной пластинки и интерференции синфазных волн в области фокуса.

Зонные пластины применяются в качестве аналога линз от рентгеновского диапазона длин волн до СВЧ, включая акустику [Minin O.V. and Minin I.V. Diffractive optics of millimetre waves. - IOP publisher, London-Bristol, 2004. - 396 p.].

Известна фазовая зонная пластинка [Wood, R. Physical Optics. / R. Wood. - New York: The MacMillan Company, 1911. P. 38], фокусирующая падающее на ее поверхность электромагнитное излучение за счет внесения фазового сдвига величиной в половину длины волны падающего излучения в четных либо нечетных зонах Френеля. Фазовый сдвиг возникает за счет изменения толщины пластины либо показателя преломления в соответствующих зонах.

Недостатком фазовой бинарной зонной пластинки является низкое пространственное разрешение, не превышающее дифракционного предела.

Первое упоминание об использовании зонных пластин в СВЧ диапазоне относится, по-видимому, к 1936 году [Patent USA № 2.043.347 Clavier A.G., Darbord R.H. Directive radio system. 1939 Jule 9.]. Фазовая зонная пластина с двумя уровнями квантования фазы в СВЧ диапазоне была предложена в 1939 году Edmand Bruce [Patent USA № 2.169.553 Bruce E. Directive radio system. 1939 Aug. 15].

В работах [Sobel F., Wentworh E.L., Wiltse J.C. Quasi optical surface waveguide and other components for the 100- to 1000 Gc/sec region // IRE Trans. Microwave Theory and Techniques. - 1961. - v. MMT-9, № 6.- р. 512-518; Щукин И.И. Формирование радиоизображений фазоинверсными зонными пластинками // Вопросы рассеяния и оптимального приема электромагнитных волн. Воронеж: ВГУ, 1973. - с. 403-406; Minin O.V. and Minin I.V. Diffractive optics of millimetre waves. - IOP publisher, London-Bristol, 2004. - 396 p.] было показано, что фокусирующая способность зонной пластинки с фокусным расстоянием порядка диаметра зонной пластины совпадает с фокусирующей способностью идеальной линзы и не превышает дифракционного предела.

Зонная пластина Френеля и Соре состоит из соосных чередующихся зон, прозрачных и непрозрачных для освещающего излучения, границы радиусов зон которых совпадают с радиусами зон Френеля.

Недостатком зонной пластины Френеля и Соре является низкое пространственное разрешение и низкая эффективность фокусировки, не превышающая 10 %.

Достоинством фазовой зонной пластины является высокая эффективность фокусировки. С увеличением числа уровней квантования фазы увеличивается ее энергетическая эффективность фокусировки.

Недостатком фазовой зонной пластины является низкое пространственное разрешение.

Известны зонные пластины с субволновым разрешением и фокусным расстоянием не более длины волны используемого излучения. Фазовая зонная пластинки с фокусным расстоянием F=0,79λ обеспечила разрешение 0,63λ при фокусировке плоской линейно поляризованной волны [R.G. Mote, S.F. Yu, A. Kumar, W. Zhou, X.F. Li. Experimental demonstration of near-field focusing of a phase micro-Fresnel zone plate (FZP) under linearly polarized illumination // Appl. Phys. B. - 2011. - 102. - P. 95-100.], а в работе рассмотрена фазовая зонная пластина [R.G. Mote, S.F. Yu, W. Zhou, X.F. Li Subwavelength focusing behavior of high numerical-aperture phase Fresnel zone plates under various polarization states // Appl. Phys. Lett. - 2009. - V. 95. - P. 191113.], у которой было достигнуто разрешение 0,39λ.

В работе [I.V. Minin, O.V. Minin, N. Gagnon, A. Petosa. Investigation resolution of phase correcting Fresnel lenses with small values of F/D and subwavelength focus // Компьютерная оптика №30, 2006, с. 65-68] зонная пластина с фокусным расстоянием, равным половине длины волны, обеспечила разрешение равное 0,37λ.

Недостатком зонной пластины с субволновым разрешением является низкое пространственное разрешение.

Известна зонная пластинка с субволновой фокусировкой [Стафеев С.С., О'Фаолейн Л., Шанина М.И., Котляр В.В., Сойфер В.А. Субволновая фокусировка с помощью зонной пластинки Френеля с фокусным расстоянием 532 нм // Компьютерная оптика, т. 35, № 4, 2011, с. 460-461], состоящая из соосных чередующихся зон, выполненных из диэлектрика с показателем преломления N, с дискретом корректировки фазы, который выбирается из ряда δ=2π/М, где М - целое четное число, и фокусным расстоянием не более длины волны используемого излучения. Фазовая бинарная зонная пластинка (М=2) с фокусным расстоянием F=λ обеспечила пространственное разрешение 0,42λ.

Недостатком зонной пластины с субволновым разрешением является низкое пространственное разрешение.

Наиболее близким по сущности к заявляемому изобретению и выбранным в качестве прототипа является зонная пластина по патенту РФ 2749059, «Зонная пластина с субволновой фокусировкой (варианты)», МПК H01Q 15/12. Зонная пластина с субволновой фокусировкой, состоит из соосных чередующихся зон, выполненных из диэлектрика с показателем преломления N, с дискретом корректировки фазы, который выбирается из ряда δ=2π/М, где М - целое четное число, и фокусным расстоянием не более длины волны используемого излучения, а фазовый профиль зонной пластины выполняется на большем основании усеченного конуса, с высотой конуса, равной фокусному расстоянию зонной пластины, и сужающегося по направлению к фокусу зонной пластины.

Задачей настоящего изобретения является устранение указанных недостатков, а именно повышение разрешения зонной пластины, обеспечивая субволновую фокусировку излучения.

Указанная задача достигается тем, что зонная пластина с субволновой фокусировкой, состоящая из соосных чередующихся зон, выполненных из диэлектрика с показателем преломления N, с дискретом корректировки фазы, который выбирается из ряда δ=2π/М, где М - целое четное число, и фокусным расстоянием не более длины волны используемого излучения, с фазовым профилем зонной пластины, выполненным на большем основании усеченного конуса, с высотой конуса, равной фокусному расстоянию зонной пластины, и сужающегося по направлению к фокусу зонной пластины, новым является то, что зонная пластина дополнительно содержит металлическую микроразмерную сферу, расположенную на вершине его конуса. Кроме того, микроразмерная сфера выполнена из диэлектрика с высоким показателем преломления по отношению к окружающему пространству.

Изобретение поясняется чертежом.

На Фиг. 1 приведен пример варианта схемы двухуровневой фазовой зонной пластины с субволновой фокусировкой.

Обозначения: 1 - освещающее излучение, 2 - фазовый профиль зонной пластины, выполненный на большем основании конуса, 3 - коническая насадка в виде усеченного конуса с высотой, равной фокусному расстоянию зонной пластины, 4 – микроразмерная сфера.

Под микроразмерной сферой понимается частица сферической формы с диаметром менее λ/2, где λ - длина волны излучения в окружающей частицу среде.

Зонная пластина с субволновой фокусировкой работает следующим образом.

Источник электромагнитного (лазер, диод Ганна, лампа обратной волны и т.д.) излучения формирует электромагнитную волну 1, который освещает фазовый профиль зонной пластины 2, расположенной непосредственно на основании усеченного конуса 3 с высотой конической насадки равной фокусному расстоянию зонной пластины. При этом фазовый сдвиг возникает, например, за счет изменения толщины зонной пластины 2. В результате дифракции излучения 1 на фазовом профиле зонной пластины возникают фазовые сдвиги падающей волны и при интерференции синфазных волн осуществляется фокусировка падающего излучения в область вершины усеченного конуса 3. При выборе фокусного расстояния не более длины волны падающего излучения осуществляется субволновая фокусировка. При распространении падающего излучения в материале конической насадки 3 генерируются поверхностные волны, которые распространяются по направлению к фокусу зонной пластины по поверхности сужающейся конической насадки 3. Так как высота конической насадки 3 равна фокусному расстоянию зонной пластины, в области вершины усеченного конуса формируется субволновая область фокусировки. Таким образом, происходит усиление концентрации энергии при фокусировке с одновременным увеличением пространственного разрешения. На вершине усеченного конуса расположена микроразмерная сфера 4, выполненная из металла или диэлектрика с высоким показателем преломления по отношению к окружающему пространству.

Известно, что для достижения субволновой фокусировки излучения могут использоваться металлические или диэлектрические микросферы, выполненные из материалов с высоким показателем преломления [Дегтярев С.А., Устинов А.В., Хонина С.Н. Нанофокусировка с помощью заостренных структур // Компьютерная оптика, 2014, том 38, №4, с. 629-637].

Металлическая микроразмерная сфера (микросферы) или диэлектрическая микроразмерная сфера из материала с высоким показателем преломления способствует концентрации излучения по обе стороны от микросферы перпендикулярно к направлению распространения излучения. Поскольку направление распространения продольной компоненты перпендикулярно оси конуса, максимум интенсивности образуется вблизи поверхности микросферы на продолжении оси конуса. Это приводит к уменьшению диаметра центрального пятна, сформированного такой квазиоптической системой, до размеров, близких к размеру микросферы.

Работает зонная пластина с субволновой фокусировкой следующим образом: электромагнитное излучение 1 с радиальной поляризацией освещает фазовый профиль зонной пластины, выполненный на большем основании конуса 2 и далее проходит к его вершине 3, где суммируется таким образом, что происходит усиление продольной компоненты электромагнитного поля и ослабление поперечных компонент. Продольная компонента огибает микросферу 4 и образует максимум вблизи ее поверхности. Максимум образуется только в месте расположения микросферы 4 и поэтому имеет размер, близкий к размеру микросферы 4.

Известные способы позволяют прикреплять на вершину конуса микрочастицы различных размеров, вплоть до размера в несколько молекул вещества, например, http: //www.htmdt-tips.com/products/group/cp, где описаны консоли субмикронных сфер, присоединенных к самому концу иглы из кремния.

Предлагаемое техническое решение обеспечивает уменьшение размера области фокусировки излучения на оптической оси до размеров, определяемых размерами металлической или диэлектрической микросферы, выполненной из материала с высоким показателем преломления.

Зонная пластина с субволновой фокусировкой, состоящая из соосных чередующихся зон, выполненных из диэлектрика с показателем преломления N, с дискретом корректировки фазы, который выбирается из ряда , где М - целое четное число, и фокусным расстоянием не более длины волны используемого излучения, с фазовым профилем зонной пластины, выполненным на большем основании усеченного конуса, с высотой конуса, равной фокусному расстоянию зонной пластины, и сужающегося по направлению к фокусу зонной пластины, отличающаяся тем, что зонная пластина дополнительно содержит металлическую микроразмерную сферу, расположенную на вершине его конуса.



 

Похожие патенты:

Изобретение относится к области исследования поверхности металлов и полупроводников путем измерения характеристик направляемых ей поверхностных электромагнитных волн (ПЭВ) и может найти применение в сенсорных устройствах, абсорбционных спектрометрах и интерферометрах, использующих в качестве носителя информации поверхностные плазмон-поляритоны (ППП), являющиеся разновидностью ПЭВ.

Изобретение относится к оптическим приборам. Оптический прибор для формирования оптического изображения, предназначенного для наблюдения, содержит оптическую систему для формирования оптического изображения объекта, видимого наблюдателю на выходном зрачке на плоскости наблюдения, и дифракционный элемент, расположенный в плоскости изображения оптической системы и выполненный с возможностью формирования набора выходных зрачков, которые визуально воспринимаются наблюдателем как единый увеличенный выходной зрачок.

Изобретение может быть использовано при изготовлении высокоточных дифракционных оптических элементов (ДОЭ), таких как корректоры волнового фронта (аберраций) и дифракционные эталонные линзы для контроля качества оптических поверхностей интерферометрическим методом. ДОЭ состоит из клинообразной оптической пластины с поверхностным слоем, содержащим дифракционную структуру, выполненную в виде набора зон.

Изобретение относится к устройствам отображения, в которых используются дифракционные элементы для расширения выходного зрачка дисплея для визуального отображения. .

Изобретение относится к устройствам отображения, в частности к устройствам, обеспечивающим разделение цветов в расширителях выходного зрачка, и может быть использовано в мобильных телефонах, коммуникаторах, карманных компьютерах и других устройствах. .

Изобретение относится к оптическому защитному элементу. .
Наверх