Кавитационный способ получения газового гидрата

Изобретение относится к кавитационному способу получения газового гидрата, при котором в реакционный сосуд подают воду и сжиженный газ-гидратообразователь. Способ характеризуется тем, что газ находится под статическим давлением в метастабильном состоянии. Термобарические условия в реакционном сосуде соответствуют условиям, при которых возможно гидратообразование. В реакционный сосуд устанавливают импеллер, состоящий из корпуса, вала и крыльчаток. При этом в нижней части корпуса, находящейся в воде, выполнены отверстия, с помощью вращающихся крыльчаток создают напор, так как пропускная способность отверстий меньше, чем производительность импеллера, создается разница давлений внутри и снаружи корпуса. Через отверстия начинает всасываться вода и сжиженный газ-гидратообразователь, что приводит к вскипанию сжиженного газа-гидратообразователя и активному перемешиванию, что, в свою очередь, приводит к интенсивному гидратообразованию. Использование предлагаемого способа позволяет упростить процесс за счёт отсутствия компрессора, с помощью которого сжимают и охлаждают газ, а также обеспечить непрерывность процесса образования газового гидрата. 1 ил.

 

Изобретение относится к области газовой промышленности и предназначено для получения гидратов различных газов (метан, углекислый газ, этан, пропан и т.д.).

Известен способ транспортирования или хранения гидратов газов (патент РФ № 2200727, 1997 г., С07С 5/02), в котором сжатый газ подают в реакционный сосуд и вместе с водой, находящейся под давлением, расширяют с уменьшением давления, пропуская через сопла или аналогичные отверстия. При этом образуются мелкие капельки воды, диспергированные в расширившемся газе. Вода и газ реагируют с образованием гидрата газа. Давление и температуру в реакторе устанавливают так, чтобы способствовать образованию гидрата. Однако этот способ обладает существенным недостатком, а именно низкой скоростью роста газогидратов.

Известен способ получения гидрата газа (Патент GB № 2347938, 1999 г., F17C 11/00), где газ реагирует с водой в реакционном сосуде с образованием гидрата при давлении и температуре, необходимых для образования гидрата. Верхняя часть сосуда заполнена газовой фазой, нижняя - жидкой фазой. Вода распыляется через сопла, находящиеся в верхней части реакционного сосуда. Для образования капель жидкости используется ультразвуковая вибрирующая пластина в газовой фазе, содержащей гидратопроизводящую субстанцию. Ультразвуковая вибрирующая пластина используется для разрушения гидратных оболочек на поверхности больших капель воды, что приводит к реакции всей капли жидкости с образованием гидрата. Использование ультразвукового излучателя в газовой фазе интенсифицирует процесс образования газогидратов, однако недостатки ранее рассмотренного аналога (патент РФ № 2200727, 1997 г., С07С 5/02) присутствуют и здесь. По мнению авторов, использование ультразвукового излучателя в жидкой фазе является менее предпочтительным, чем в газовой фазе. К недостаткам использования ультразвукового излучателя в жидкой фазе с газовыми пузырьками относятся невозможность получения высоких амплитуд давления вследствие высокой сжимаемости газожидкостной среды, а также малая зона воздействия излучателя на среду из-за сильного затухания ультразвука в газожидкостных средах.

Известен способ получения газогидратов методом взрывного вскипания (заявка на патент РФ № 2016137058, 2016 г., B01F 3/04, C02F 1/00, F17C 5/02, B01J 3/00), при котором реакционный сосуд, заполненный водой, подают сжатый газ, отличающийся тем, что в реакционном сосуде газ сжижается, а сжиженный газ переводят в состояние взрывного вскипания путем декомпрессии реакционного сосуда (резкого сброса давления до атмосферного). Недостаток данного способа в том, что метод взрывного вскипания является методом разового действия, то есть после разгерметизации камеры необходимо снова подготавливать реакционный сосуд (заливать воду, закрывать реакционный сосуд, заправлять гидратообразователь и охлаждать содержимое реакционного сосуда).

Наиболее близким по технической сущности к заявляемому изобретению является способ получения газовых гидратов (патент РФ № 2270053, 2003 г., B01F 3/04], при котором газ подвергают сжатию, охлаждению и смешивают с водой в сосуде, находящемся под давлением и температуре ниже равновесной температуры образования газового гидрата. На газожидкостную смесь импульсно воздействуют ударными волнами, что приводит к повышению давления в среде, к дроблению газовой фазы и значительной интенсификации процесса гидратообразования.

Указанный способ решает задачу повышения скорости образования газовых гидратов. Однако достичь более высоких скоростей образования газовых гидратов этим способом нельзя, поскольку технически невозможно осуществить ввод в реактор равномерно распределенного в воде большого количества газа, сравнимого по массе с количеством вводимой в сосуд воды, за небольшие отрезки времени (десятки миллисекунд) между последовательно воздействующими на среду ударными волнами. При близких массовых расходах воды и газа вода уже не будет несущей фазой, что резко уменьшит (на порядок и более) отвод тепла, выделяющегося вследствие реакции гидратизации, и соответственно резко упадет (на порядок и более) скорость гидратообразования.

Задачей изобретения является ускорение процесса образования газового гидрата, упрощение и удешевление процесса за счёт отсутствия компрессора, с помощью которого сжимают и охлаждают газ, а также обеспечение непрерывности процесса образования газового гидрата.

Поставленная задача решается тем, что в кавитационном способе получения газового гидрата, при котором в реакционный сосуд подают воду и сжиженный газ-гидратообразователь, согласно изобретению, в реакционный сосуд устанавливают импеллер, состоящий из корпуса, вала и крыльчаток, при этом в нижней части корпуса, находящейся в воде, выполнены отверстия, с помощью вращающихся крыльчаток создают напор и, через отверстия, начинает всасываться вода и сжиженный газ-гидратообразователь, что приводит к вскипанию сжиженного газа-гидратообразователя и активному перемешиванию, что в свою очередь, приводит к интенсивному гидратообразованию.

Для повышения скорости гидратообразования в реакционном сосуде вместе с водой и сжиженным газом-гидратообразователем (далее по тексту «газ») находится импеллер. Применение сжиженного газа позволяет значительно уменьшить объём реакционного сосуда, что в свою очередь улучшает технико-экономические показатели. Вращаясь, крыльчатки импеллера создают напор и, через отверстия в корпусе, начинает всасываться вода и газ. Так как пропускная способность отверстий меньше чем производительность импеллера, создается разница давлений внутри и снаружи корпуса. Понижение давления внутри корпуса импеллера приводит к вскипанию газа на всасывающих сторонах крыльчаток импеллера и активному перемешиванию. Вскипание газа на всасывающих сторонах крыльчаток импеллера является эффектом кавитации. Кипение газа сопровождается понижением температуры, что в свою очередь приводит к интенсивному гидратообразованию.

На фиг. 1 показана схема устройства для осуществления заявленного способа, где:

1 – корпус импеллера;

2 – вал, вращающий крыльчатки импеллера;

3 – крыльчатки;

4 – отверстия для всасывания воды и газа;

5 – решётка для сбора гидратной массы;

6 – сжиженный газ;

7 – вода;

8 – вода, сжиженный газ, гидратная масса;

9 – гидратная масса;

10 – корпус реакционного сосуда.

Способ осуществляется следующим образом.

В реакционном сосуде, вместе с водой и сжиженным газом, находится импеллер, состоящий из корпуса 1 наглухо закрытого с одного конца, вала 2 и крыльчаток 3. Крыльчатки жестко закреплены на валу. Газ находится под статическим давлением в метастабильном состоянии. Термобарические условия в реакционном сосуде соответствуют условиям, при которых возможно гидратообразование. В корпусе импеллера имеются отверстия 4 для всасывания воды и газа. К верхней части корпуса импеллера 1, находящейся в газовой среде, по окружности прикреплена решетка 5. Вращаясь, крыльчатки импеллера 3 создают напор и, через отверстия в корпусе 4, начинает всасываться вода и газ. Так как пропускная способность отверстий меньше, чем производительность импеллера, создается разница давлений внутри и снаружи корпуса импеллера. Понижение давления внутри корпуса импеллера приводит к вскипанию газа на всасывающих сторонах крыльчаток импеллера и активному перемешиванию. Вскипание газа на всасывающих сторонах крыльчаток импеллера является эффектом кавитации. Кипение газа сопровождается понижением температуры, что в свою очередь приводит к интенсивному гидратообразованию. Образовавшаяся гидратная масса выталкивается импеллером на решетку. Вскипевший на крыльчатках газ, не перешедший в гидратное состояние, по выходу из корпуса импеллера конденсируется и вместе с водой возвращается на дно реакционного сосуда и снова всасываются в импеллер, а получившийся газовый гидрат остаётся на решетке. По мере необходимости в реакционный сосуд добавляют воду и газ, а получившийся газовый гидрат удаляется.

Использование заявляемого способа получения газогидратов позволяет ускорить процесс гидратообразования.

Кавитационный способ получения газового гидрата, при котором в реакционный сосуд подают воду и сжиженный газ-гидратообразователь, отличающийся тем, что газ находится под статическим давлением в метастабильном состоянии, термобарические условия в реакционном сосуде соответствуют условиям, при которых возможно гидратообразование, в реакционный сосуд устанавливают импеллер, состоящий из корпуса, вала и крыльчаток, при этом в нижней части корпуса, находящейся в воде, выполнены отверстия, с помощью вращающихся крыльчаток создают напор, так как пропускная способность отверстий меньше, чем производительность импеллера, создается разница давлений внутри и снаружи корпуса, через отверстия начинает всасываться вода и сжиженный газ-гидратообразователь, что приводит к вскипанию сжиженного газа-гидратообразователя и активному перемешиванию, что, в свою очередь, приводит к интенсивному гидратообразованию.



 

Похожие патенты:

Группа изобретений относится к устройству для подачи текучей среды и/или выпуска текучей среды из резервуара на танкере. Устройство (16) содержит трубу (18), имеющую вертикальную продольную ось (A), верхний конец (18а) которой предназначен для соединения со средствами подачи текучей среды и/или выпуска текучей среды.

Изобретение относится к криогенной технике. Способ хранения криогенных жидкостей в закрытых емкостях включает изохорный процесс повышения давления от теплопритока и процесс снижения давления в паровой подушке внутреннего сосуда криогенной емкости путем периодического душирования паров криогенной жидкостью, подаваемой насосом со дна внутреннего сосуда емкости.

Изобретение относится к области хранения сжиженных газов. Установка для хранения сжиженного газа, включающая в себя резервуар, имеющий внутреннее пространство, ограниченное герметичными и теплоизоляционными стенками, насос (10), расположенный во внутреннем пространстве (6) резервуара вблизи нижней стенки (8) резервуара и предназначенный для по меньшей мере частичного погружения в груз в виде сжиженного газа для перекачивания груза сжиженного газа, нагнетательную линию (11), соединяющую выходной патрубок насоса с контуром жидкостного коллектора, расположенную снаружи резервуара, и датчик (20, 201-204) температуры, выполненный с возможностью измерять температуру насоса на высоте между самой нижней точкой насоса и самой высокой точкой насоса.

Изобретение относится к криогенной технике и может быть использовано при хранении и транспортировке сжиженного газа. Способ определения оптимального значения по меньшей мере одного первого параметра выполнения процесса охлаждения внутреннего пространства (11) резервуара (1) включает в себя этапы, на которых последовательно проверяют множество разных значений указанного первого параметра.

Изобретение относится к области морского транспорта и касается системы повторного сжижения отпарного газа (BOG) на судах. Предложенная система повторного сжижения BOG содержит: компрессор, в котором BOG подвергают сжатию; теплообменник, в котором сжатый с помощью компрессора BOG охлаждают посредством теплообмена с применением в качестве охлаждающего агента BOG, несжатого компрессором; редуктор давления, расположенный после теплообменника и снижающий давление текучей среды, охлажденной с помощью теплообменника; и по меньшей мере одну комбинацию, выбранную из комбинации первого температурного датчика, расположенного перед каналом для холодной текучей среды теплообменника, и четвертого температурного датчика, расположенного после канала для горячей текучей среды теплообменника, комбинации второго температурного датчика, расположенного после канала для холодной текучей среды теплообменника, и третьего температурного датчика, расположенного перед каналом для горячей текучей среды теплообменника, и комбинации первого датчика давления, расположенного перед каналом для горячей текучей среды теплообменника, и второго датчика давления, расположенного после канала для горячей текучей среды теплообменника, при этом указанный компрессор содержит по меньшей мере один цилиндр, работающий в режиме масляной смазки.

Изобретение относится к области морского транспорта и касается системы повторного сжижения отпарного газа (ОГ) на судах. Предложена система повторного сжижения ОГ.

Изобретение относится к области морского транспорта и касается системы повторного сжижения отпарного газа (BOG) на судах. Предложенная система повторного сжижения BOG содержит: компрессор, в котором BOG подвергают сжатию; теплообменник, в котором сжатый с помощью компрессора BOG охлаждают посредством теплообмена с применением в качестве охлаждающего агента BOG, удаленного из резервуара для хранения; первый клапан, который регулирует расход текучей среды и открытие/закрытие первой линии подачи, по которой BOG, подлежащий применению в теплообменнике в качестве охлаждающего агента, подают в теплообменник, обходную линию, по которой BOG подают в компрессор после обхода теплообменника; второй клапан, расположенный на второй линии подачи, по которой BOG, применяемый в качестве охлаждающего агента в теплообменнике, подают в компрессор, при этом указанный второй клапан регулирует расход текучей среды и открытие/закрытие второй линии подачи; и редуктор давления, расположенный после теплообменника и снижающий давление текучей среды, охлажденной с помощью теплообменника, при этом указанный компрессор содержит по меньшей мере один цилиндр, работающий в режиме масляной смазки, и при этом обходная линия соединена со второй линией подачи после второго клапана.

Изобретение относится к области морского транспорта, в частности к системе и способу повторного сжижения отпарного газа (BOG), образующегося в резервуаре для хранения на судне, с применением отпарного газа в качестве охлаждающего агента. Система повторного сжижения BOG для судов содержит: многоступенчатый компрессор, в котором BOG подвергают сжатию; теплообменник, в котором сжатый с помощью многоступенчатого компрессора BOG охлаждают посредством теплообмена с применением в качестве охлаждающего агента BOG, несжатого многоступенчатым компрессором; редуктор давления, расположенный после теплообменника и снижающий давление текучей среды, охлажденной с помощью теплообменника; и обходную линию, по которой BOG подают в многоступенчатый компрессор после обхода теплообменника.

Изобретение относится к способу повторного сжижения отпарного газа (ОГ) для СПГ-танкеров. Осуществляют компримирование ОГ, охлаждение теплоносителя, соответствующего компримированному ОГ, используемому в качестве целевого продукта повторного сжижения, посредством теплообмена между теплоносителем и хладагентом, соответствующим некомпримированному ОГ, используемому в качестве хладагента, с помощью теплообменника; и расширение охлажденного ОГ.

Изобретение относится к повторному сжижению отпарного газа, образовавшегося в цистерне для хранения сжиженного газа, установленной на плавучем объекте. Установка для повторного сжижения отпарного газа, образовавшегося в цистерне, содержит компрессионный блок для сжатия отпарного газа, выпущенного из цистерны, и теплообменник для обмена теплом между отпарным газом, сжатым компрессионным блоком, и отпарным газом, выпущенным из цистерны.
Наверх