Струйно-фотокомпенсационный пропорционально-интегральный (пи) регулятор

Струйно-фотокомпенсационный пропорционально-интегральный (ПИ) регулятор состоит из пропорционального регулятора, в положительной обратной связи которого расположено интегральное звено, характеризуется тем, что пропорциональный регулятор включает в себя чувствительный элемент – пластину с нормально к ней расположенными соплами, из которых вытекают струи под давлением переменной и задания, причем в обратной связи регулятора расположено электрическое интегральное звено, состоящее из конденсатора и переменного сопротивления, изменяющего постоянную времени интегрирования. Технический результат - повышение точности регулирования за счет использования в пропорциональном регуляторе линейной компенсационной схемы, основанной на силовом действии струи на подвижную преграду, и за счет выполнения операции интегрирования с помощью расходного интегрального звена. 1 ил.

 

Изобретение относится к области пневмоэлектрических автоматических регуляторов.

Из уровня техники известен пневматический пропорционально-интегральный (ПИ) регулятор, состоящий из мембранных пропорционального регулятора и интегрального звена, соединенных с помощью сумматора [1]. Пропорциональный регулятор включает в себя элемент сравнения, в обратной связи которого расположен делитель, состоящий из переменного и постоянного сопротивлений, изменение соотношения проводимостей которых приводит к изменению коэффициента усиления разности входных давлений. Интегральное звено выполнено на базе апериодического звена, состоящего из переменного сопротивления и постоянного объема, включенных в цепь положительной обратной связи для изменения постоянной времени интегрирования.

Недостатком такого ПИ-регулятора является низкая точность, обусловленная нелинейной характеристикой мембранных чувствительных элементов.

Технический результат, который достигается в настоящем изобретении, заключается в повышении точности регулирования за счет использования в пропорциональном регуляторе линейной компенсационной схемы, основанной на силовом действии струи на подвижную преграду, и за счет выполнения операции интегрирования с помощью расходного интегрального звена.

Принцип работы ПИ-регулятора был частично использован в пропорциональном регуляторе [2], также основанным на использовании эффекта силового действия струи на пластину, жестко закрепленную на петле магнитоэлектрического гальванометра, в обратной связи которого располагается мостовая электрическая схема и вторичный прибор для регистрации процесса управления.

Более конкретно, технический результат достигается тем, что струйно-фотокомпенсационный пропорционально-интегральный регулятор состоит из пропорционального регулятора, в положительной обратной связи которого расположено интегральное звено, отличающийся тем, что пропорциональный регулятор включает в себя чувствительный элемент - пластину с нормально к ней расположенными соплами, из которых вытекают струи под давлением переменной и задания, причем в обратной связи регулятора расположено электрическое интегральное звено, состоящее из конденсатора и переменного сопротивления, изменяющего постоянную времени интегрирования.

На фиг. 1 представлена схема струйно-фотокомпенсационного пропорционально-интегрального (ПИ) регулятора. Для регистрации угла поворота чувствительного элемента - пластины 1, закрепленной на петле 2 фотоэлектрического гальванометра 3 предусмотрена оптическая схема, состоящая из зеркала 4, на которое падает луч света от источника 5, конденсора 6 и диафрагмы 7. Отраженный от зеркала луч света освещает обе половины сдвоенного фотосопротивления 8, включенного в равновесный мост 9, образованный сопротивлениями . Рамка 10 гальванометра 3 помещена в поле постоянного магнита 11, образуя при протекании тока обратной связи I магнитоэлектрический момент направленный встречно механическому моменту от силового действия струй на поверхность пластины 1.

В обратной связи ПИ-регулятора последовательно расположены делитель 12 для изменения коэффициента усиления пропорционального звена, выходной вторичный прибор миллиамперметр 13, выходное сопротивление 14 и интегральное звено 15, состоящее из конденсатора 16 и переменного сопротивления 17 для изменения постоянной времени интегрирования. Изменением проводимости α переменного сопротивления 17 можно менять постоянную времени интегрирования:

где - емкость конденсатора 16, - универсальная газовая постоянная, - абсолютная температура.

Входной канал ПИ-регулятора представлен двумя соплами 18(1) и 18(2), из которых вытекают струи под давлением, пропорциональным давлению переменной и давлению задания .

Выходной сигнал ПИ-регулятора равен:

где - разность давлений на входе ПИ-регулятора.

Библиографические данные

[1] Дмитриев В.Н., Градецкий В.Г. Основы пневмоавтоматики. М., «Машиностроение», 1973. С. 197-199

[2] Патент РФ №2018116604, 04.05.2018. Струйно-пневматический пропорциональный регулятор // Патент России №2676362, 28.12.2018. / Макаров В.А., Королев Ф.А., Тютяев Р.Е., Макаров А.В.

Струйно-фотокомпенсационный пропорционально-интегральный (ПИ) регулятор, состоящий из пропорционального регулятора, в положительной обратной связи которого расположено интегральное звено, характеризуемый тем, что пропорциональный регулятор включает в себя чувствительный элемент – пластину с нормально к ней расположенными соплами, из которых вытекают струи под давлением переменной и задания, причем в обратной связи регулятора расположено электрическое интегральное звено, состоящее из конденсатора и переменного сопротивления, изменяющего постоянную времени интегрирования.



 

Похожие патенты:

Струйно-фотокомпенсационный пропорционально-интегрально-дифференциальный (ПИД) регулятор состоит из струйно-фотокомпенсационных пропорционально-интегрального (ПИ) регулятора и дифференцирующего звена, соединенных сумматором, характеризуемый тем, что ПИ-регулятор и дифференцирующее звено содержат чувствительный элемент – пластину с нормально к ней расположенными соплами, из которых вытекают струи под давлением переменной и задания, причем в обратной связи ПИ-регулятора расположено электрическое интегральное звено, состоящее из конденсатора и переменного сопротивления, изменяющего постоянную времени интегрирования, а дифференцирующее звено включает пневматические ёмкость постоянного объёма и переменное сопротивление для изменения постоянной времени дифференцирования.

Изобретение предназначено для использования на железнодорожном транспорте и относится к устройствам автоматики и телемеханики для управления вагонными замедлителями на сортировочных горках. Автоматизированная система управления пневматическим приводом вагонного замедлителя (УПП ВЗ) с механизмами торможения правых и левых колес вагона с пневмоцилиндрами привода каждого механизма, с главной пневмолинией, соединяющей пневмоцилиндры, два устройства УПП ВЗ, содержащие воздухосборник, подсоединенный к главной пневмолинии пневмомагистралью, имеющий пневматический регулятор давления (ПРД) воздуха, электропневматический блок управления пневмоклапанами, включающий регулятор давления, управляемый двумя двухпозиционными пневмоклапанами с электромагнитным управлением, датчики давления воздуха главной пневмолинии, воздухосборника и управляющей полости тормозного пневмоцилиндра, электронный блок управления (ЭБУ), блок коммутации, канал передачи данных, соединяющий блоки коммутации, блок диагностики, аварийный блок управления, пульт управления с модулем доступа.

Предлагается способ диагностирования нестационарности объекта с действующей замкнутой системой регулирования выходного сигнала объект. Отличительными особенностями предлагаемого способа от известных является то, что в действующей системе регулирования определяют устойчивые тенденции изменения выходного сигнала регулятора и устойчивые тенденции изменения выходной величины объекта управления, а факт нестационарности объекта управления определяют по наличию угла между тенденциями изменения выходного сигнала и выходной величины объекта управления.

Группа изобретений относится к области управления электромеханическими системами. Технический результат - увеличение устойчивости в широком диапазоне скоростей.

Изобретение относится к способу формирования астатических быстродействующих демпферов летательных аппаратов (ЛА). Для осуществления способа в каждом канале управления задают требуемое значение угловой скоростей ЛА, измеряют угловую скорость ЛА, формируют сигнал на рулевой привод, полученный путем формирования и обработки двух дополнительных сигналов определенным образом на основе математической модели движения ЛА, заданной и измеренной угловой скорости ЛА.

Устройство управления манипулятором робота содержит датчик угла поворота, блок сравнения (сумматор), шесть усилителей, два интегратора, исполнительное устройство, соединенные определенным образом. Обеспечивается повышение быстродействия, снижение ошибки позиционирования, упрощение устройства и расширение функциональных возможностей.

Изобретение относится к способам управления, предназначенным для изменения формы и размеров конструкций. Способ модального управления квазистатическими линейно-упругими перемещениями конструкций заключается в следующим.

Изобретение относится к области цифровых систем управления и может быть использовано для решения задач быстродействия в автоматизированных системах, например в радиотехнике в системах фазовой автоподстройки частоты. Техническим результатом является увеличение быстродействия и числа режимов функционирования автоматизированных систем.

Изобретение относится к оптике, к устройствам для управления направлением отклонения оптических лучей и может быть использовано в астрономии, системах видения в турбулентной атмосфере, в сканирующих системах. Устройство управления двухкоординатным пьезокерамическим оптическим дефлектором состоит из решающего устройства, трех высоковольтных усилителей, а также исполнительных устройств, созданных на основе пьезопакетов.

Изобретение относится к системам автоматического управления рабочими органами сельскохозяйственных машин. Устройство содержит рабочий орган с приводом, усилитель привода рабочего органа, устройство управления, датчики для определения местоположения рабочего органа, блок энергопитания.
Наверх