Способ получения водорода

Изобретение может быть использовано для получения газообразного чистого водорода в установках, связанных с системами транспортировки газа. Способ получения водорода из природного газа включает нагрев лент из углеродной фольги в герметичной водоохлаждаемой камере прямым пропусканием электрического тока и термическое разложение природного газа в зазоре между двумя параллельными углеродными лентами. Природный газ предварительно проходит осушку от паров воды. Между лентами из углеродной фольги создают разность электрических потенциалов. Выделенный из реакционной камеры циклическим образом водород через компрессор подают в сосуд высокого давления. В результате пиролиза природного газа также образуется пироуглерод. Изобретение позволяет исключить выделение диоксида углерода при получении чистого водорода из природного газа. 2 ил., 1 пр.

 

Изобретение относится к области выделения водорода из природного газа.

В настоящее время в мире потребляется до 80 млн. тонн водорода, из которых более 70% производится из природного газа (ПГ). Лишь ничтожная доля (0,1%) водорода производится при электролизе воды. Это обусловлено тем, что себестоимость водорода в этом случае в 3 -5 раз превышает тот же показатель для водорода, получаемого при пиролизе ПГ. При использовании водорода в качестве моторного топлива исключительно важна степень его чистоты, поскольку сгорание промежуточных продуктов распада углеводородов приводит к образованию нагара на деталях двигателей и снижению их ресурса.

В связи с обозначенной целью настоящего изобретения следует обратить внимание на степень чистоты используемого в двигателях водорода. Согласно действующему ГОСТ Р 51673-2000 в водороде 1 сорта допускается следующее содержание сторонних примесей: суммарная объемная доля кислорода и аргона - не более 0,0002%, метана - не более 0,0005%, паров воды - не более 0,0002%. Для обеспечения столь жестких технических требований аппараты для пиролиза ПГ снабжают дополнительными устройствами для более глубокой очистки водорода.

Наиболее рациональным вариантом является декарбонизация ПГ в местах конечного потребления водорода и использование существующих газотранспортных систем для доставки сырьевого ПГ к местам производства водородв, максимально приближенным к потребителям. Транспорт водорода или его смеси с метаном не является оптимальным решением как по причине утечек газа, так и вследствие водородного охрупчивания сварных швов трубопроводов.

Известен способ получения водорода (по патенту РФ №2509720 от 20.03.2014) [1], включающий получение синтез-газа в установке парового рифор-минга углеводородной загрузки, паровую конверсию полученного синтез-газа с получением потока водорода, содержащего метан и диоксид углерода, улавливание диоксида углерода, присутствующего в потоке улавливания и возврат на паровой риформинг метана, СО и СO2, присутствующих в потоке водорода. Изобретение позволяет повысить чистоту водорода и использовать примеси в процессе парового риформинга.

К недостаткам способа [1] относится использование парового риформинга ПГ согласно формуле СН42О + тепло → СО+3Н2 с последующей конверсией водяного газа по реакции СО+Н2О → СО22. При этом в потоке водорода неизбежно присутствие СО и СО2, что требует дополнительных усилий и применения дорогостоящего технологического оборудования для их удаления.

Известен также способ (по патенту РФ №2694033 от 2019 г.) [2] выделения водорода из метана или метаносодержащего газа, включающий разложение метана в электрическом разряде и выделение водорода из продуктов разложения метана - водородосодержащих газов - путем его химического связывания в гидриде металла или сплава с последующим его термическим дегидрированием, характеризующийся тем, что выделение водорода производится путем плазменного осаждения гидридного покрытия на носитель.

Способ [2] позволяет получать водород при пиролизе метана в СВЧ разряде, но лишь в связанном химически состоянии (в составе гидрида металла). Поэтому нет оснований рассчитывать на возможность получения газообразного водорода в значительных количествах.

Наиболее близким к предлагаемому изобретению и принятым за прототип является способ пиролитического выращивания нанокристаллических слоев графита (по патенту РФ №2429315 от 20.09.2011 г. ) [3], включающий нагрев лент из углеродной фольги в герметичной водоохлаждаемой камере прямым пропусканием электрического тока и термическое разложение природного газа в узком зазоре между двумя параллельными углеродными лентами при давлении в диапазоне от 10 до 30 Торр. Данный способ изначально предназначался для пиролитического получения слоев графита, а неизбежно выделяющийся в этом процессе водород рассматривался как побочный продукт, дожигаемый за пределами реакционной камеры и не подлежащий утилизации. Однако, изложенные ниже аргументы показывают, что количество выделяемого газообразного и высокочистого водорода может быть достаточным для промышленного интереса. Способ [3] изначально является «сухим», т.е. при его осуществлении не используется паровой риформинг и не выделяется диоксид углерода, способствующий развитию парникового эффекта в атмосфере.

К недостаткам способа [3] применительно к задаче настоящего изобретения относятся использование полированной пластины монокристаллического кремния, необходимой для получения нанокристаллов углерода, а также крайне узкий диапазон давлений реакционного газа, также необходимый для этих целей. Задачей настоящего изобретения является создание эффективного и экологически безопасного способа получения чистого водорода из природного газа.

Техническим результатом настоящего изобретения является получение водорода путем прямого разложения ПГ без использования парового риформинга, что практически исключает выделение диоксида углерода при проведении процесса.

Для достижения указанного технического результата в известном способе, включающем нагрев лент из углеродной фольги в герметичной водоохлаждаемой камере прямым пропусканием электрического тока и термическое разложение углеводородного реагента, причем в узком зазоре между двумя параллельными углеродными лентами размещают полированную кремниевую пластину, нагревая ее до температуры 1200-1350°С, а в качестве углеводородного реагента используют метан при давлении в диапазоне от 10 до 30 Торр, кремниевая пластина не используется, подаваемый в реакционную камеру природный газ предварительно осушают от паров воды, между нагретыми угдеродными лентами создают разность электрических потенциалов, а выделенный из природного газа водород циклическим образом подают из камеры в сосуд высокого давления.

Как известно, содержание метана в ПГ достигает 98% об. Предлагаемый процесс отличается от обычного термического пиролиза метана тем, что в реакционной камере используется активатор пиролиза, образованный нагретыми параллельными углеродными лентами, между которыми создают разность потенциалов. Это позволяет утверждать о совмещении в одном процессе термического пиролиза с электролизом. На характер процесса оказывает влияние то обстоятельство, что не используется тепловая изоляция и пиролизуемый ПГ практически мгновенно соприкасается с нагретыми до высокой температуры элементами активатора, минуя зоны с промежуточной, более низкой температурой. Это обстоятельство позволяет обеспечить одностадийную схему распада молекулы метана по реакции СН4 → С-4+4Н+1. При этом в созданном активатором электрическом поле отрицательно заряженные атомы углерода внедряются в материал углеродных лент, а атомарный водород поступает в объем реакционной камеры, где менее чем за 1 сек переходит в молекулярную форму Н2. Следует отметить, что одновременно с одностадийной схемой возможен промежуточный распад молекулы метана с образованием однозарядного комплекса метила СН3-1, также внедряемого в материал углеродных лент. Описанное разделение химических элементов при пиролизе ПГ с применением электрического активатора справедливо и для других примесных содержимых ПГ.

Схема реакционной камеры приведена на Фиг. 1. Внутри герметичного водоохлаждаемого корпуса 1 размещен активатор пиролиза, содержащий верхнюю ленту 2 из углеродной фольги, нижнюю ленту 3 и две изолирующие прокладки 4 между лентами. Напряжение нагрева подается к нижней ленте 3 через два электрода 5. Откачка камеры 1 проводится форвакуумным насосом через отверстие 6. Напряжение смещения U подается между лентами 2 и 3 с помощью прижимных контактов. Это напряжение может быть как постоянным, так и переменным промышленной частоты 50 Гц. На схеме обозначен ток I1, нагревающий нижнюю ленту, и ток I2, протекающий через ионизированный газ в зазоре между лентами.

Блок-схема устройства для осуществления предлагаемого способа приведена на Фиг. 2. Поток природного газа 7 поступает в камеру 1 через цеолитовую ловушку 8, через вентиль V1. Камера снабжена натекателем V2 для напуска воздуха. Через вентиль V3 камера 1 может откачиваться форвакуумным насосом 9. Полученный по завершению цикла пиролиза водород через вентиль V4 передают в компрессор 10, а из него через вентиль V5 в сосуд высокого давления (баллон) 11.

Производительность способа по выходу водорода определяется объемом реакционной камеры и площадью поверхности активатора пиролиза. По мере насыщения лент активатора пироуглеродом необходимо производить их замену.

Пример использования способа

Вакуумную камеру, содержащую активатор из двух лент углеродной фольги марки PAPYEX, откачали форвакуумным насосом, затем вентиль откачки перекрыли и включили нагрев активатора и подали напряжение смещения величиной 36 В между его лентами. Через 3 минуты камеру заполнили осушенным природным газом до давления 170 Торр. Через 10 минут после увеличения давления до 670 Торр провели перекачку водорода из камеры в баллон с помощью компрессора. Далее циклы повторяли вплоть до полного заполнения баллона до давления 150 атм.

Анализ проб водорода методом газовой хроматографии показал его соответствие требованиям ГОСТ Р 51673-2000.

Способ получения водорода, включающий нагрев лент из углеродной фольги в герметичной водоохлаждаемой камере прямым пропусканием электрического тока и термическое разложение природного газа в зазоре между двумя параллельными углеродными лентами, отличающийся тем, что природный газ предварительно проходит осушку от паров воды, между лентами из углеродной фольги создается разность электрических потенциалов, а выделенный из реакционной камеры циклическим образом водород через компрессор подается в сосуд высокого давления.



 

Похожие патенты:

Изобретение может быть использовано в производстве водорода в энергетической, химической, нефтегазовой промышленности. Для получения водорода природный газ смешивают с водородом, нагревают в первом теплообменном аппарате, направляют в реактор-десульфуризатор.

Изобретение относится к области химических технологий. Изобретение относится к способу получения синтез-газа методом паровой конверсии метана.

Изобретение относится к процессам разделения стабильных изотопов физико-химическими методами. Для получения высококонцентрированного изотопа 13С низкотемпературной ректификацией оксида углерода СО в качестве исходного сырья используют диоксид углерода СО2 с природным изотопным составом, который подают в качестве потока питания в противоточную массообменную колонну между ее концентрирующей и исчерпывающей частями.

Изобретение относится к области переработки отходов полиэтилентерефталата (ПЭТФ) в углеродный материал. Предложен способ переработки отходов ПЭТФ, включающий предварительное растворение отхода полиэтилентерефталата в диметилсульфоксиде при температуре 160-180°С, добавление гидроксида щелочного металла и щелочной гидролиз растворенного отхода ПЭТФ при температуре 130-150°С и атмосферном давлении с получением соли терефталевой кислоты с последующим ее пиролизом под действием ИК-излучения в инертной атмосфере при температуре 800-900°С (два варианта, использующих разные гидроксиды щелочного металла).

Изобретение относится к области органической химии гетероциклических соединений, в частности к синтону для получения лекарственных веществ, ингибиторов коррозии, красителей, инсектицидов. Раскрывается способ получения 1,9-3’,4’-дигидро-2H-бензо[b][1’,4’]оксазино-1,9-дигидро-(С60-Ih)[5,6]фуллерена формулы (1), отличающийся тем, что фуллерен С60 взаимодействует с 2-аминофенолом на воздухе в присутствии твердого LiOH и Pb(CH3COO)4 при мольном соотношении С60:2-аминофенол:LiOH:Pb(CH3COO)4=1:10:10:2.4, при температуре 40°С в среде толуол:Et2O=5:1 (объемное соотношение) в течение 1 часа и дальнейшем перемешивании при комнатной температуре на магнитной мешалке в течение 23 часов.

Изобретение относится к способу паровой конверсии метана или метансодержащих углеводородов, включающему получение исходной углеводородно-паровой смеси и ее контактирование при высокой температуре с каталитическим материалом, содержащим мелкогранулированный природный серпентинит или иной материал из группы силикатных ультраосновных пород, при пропускании указанной смеси через слой такого материала.

Изобретение относится к способу переработки германийсодержащего сырья, в качестве которого используют германийсодержащий уголь или лигнит. Способ получения германиевого концентрата из ископаемых углей включает термообработку угля при подаче воздуха снизу и получении зольного уноса, содержащего синтез-газ и шлак, при этом термообработку угля проводят в аппарате циркулирующего кипящего слоя при температуре 800-900°С, скорость движения зоны горения поддерживают путем регулирования расхода воздуха при коэффициенте избытка воздуха α=0,2-0,3, a синтез-газ и мелкие частицы шлака на выходе направляют в тканевый фильтр для разделения на германиевый концентрат и синтез-газ.

Изобретение относится к области органической химии гетероциклических соединений, в частности, к разработке прекурсора противовирусных и гепатототоксических препаратов. Раскрывается 1,9-(2'-Гидроксиметил-1',4'-диоксано)-1,9-дигидро-(С60-Ih)[5,6]фуллерен формулы (1).

Изобретение относится к способу получения синтетических углеводородов, при котором полученный при газификации угля синтез-газ, содержащий Н2 и СО, обессеривают и затем подают в реактор синтеза Фишера-Тропша, где посредством каталитических реакций образуются углеводороды, при этом обеспечивают молярное соотношение между Н2 и СО 1,9-2,0:1, а полученные углеводороды отводят потребителю.

Изобретение относится способу получения активированного угля. Предложен способ получения активированного угля из отходов зерноперерабатывающей и лесной промышленности, который включает следующие стадии: экструдирование отходов до порошка дисперсностью 1-3 мм, гранулирование отходов для получения пеллет, сушку при температуре 120-180°С, перемещение пеллет горизонтальным шнеком в нижнюю часть печи карбонизации для нагрева до температуры 300-850°С без доступа кислорода, далее смесь газа и кокса подают в циклон, где разделяют ее на кокс и пиролизный газ, кокс горизонтальным шнеком направляют в нижнюю часть печи термогазовой активации, где его нагревают до 700-900°С за счет непосредственного контакта внутренних стенок печи активации и вертикальных пластин внутри ее корпуса, с получением активированного угля, который охлаждают до 30-40°С и направляют на фасовку.

Изобретение относится к области химических технологий. Изобретение относится к способу получения синтез-газа методом паровой конверсии метана.
Наверх