Керамическая масса

Изобретение относится к производству строительных материалов и изделий и, в частности, к производству лицевого керамического кирпича. Керамическая масса, включающая опал-кристобалитовую породу – опоку, измельченную до зернового состава не более 2,5 мм, и поверхностно-активное вещество – суперпластификатор С-3, дополнительно содержит буру – десятиводный тетраборат натрия, при следующем соотношении компонентов, мас.%: указанная опока – 65,0-82,6, суперпластификатор С-3 – 0,8-1,2, бура - десятиводный тетраборат натрия – 0,4-2,0, вода – 16,2-31,8. Технический результат заключается в повышении морозостойкости, снижении водопоглощения. 3 табл., 1 пр.

 

Изобретение относится к производству строительных материалов и изделий, и, в частности, к производству лицевого керамического кирпича. Основным сырьём для производства изделий стеновой керамики является легкоплавкое глинистое сырьё (глины, суглинки), однако керамический камень на его основе обладает повышенной средней плотностью – 1700-2100 кг/м3, что вызывает повышенную теплопроводность изделий.

Известны керамические массы на основе кремнистых опал-кристобалитовых – опок с различными видами добавок и легкоплавких примесей (В.Н. Иваненко. Строительные материалы и изделия из кремнистых пород. Будевильник, Киев, 1978 г.). Керамический камень на основе опок, в силу их высокой микропористости – 40-60%) имеет низкую плотность и соответственно теплопроводность в сухом состоянии. Однако в силу того, что опоки являются камневидным не размокаемым сырьём, они обладаю плохими формующими свойствами. Ввод пластичных глин приводит к снижению микропористости, повышению средней плотности и теплопроводности.

Наиболее близким техническим решением является керамическая масса, включающая опал-кристобалитовую породу – опоку, измельченную до зернового состава 0-0,315 – 0-2,5 мм, дополнительно содержащую в составе в качестве поверхностно-активного вещества суперпластификатор С-3, при следующем соотношении компонентов, мас. %: указанная опока – 80-90, суперпластификатор С-3 – 0,2-2,0, вода – остальное (см. патент RU 2303020, C04B 35/14, опубликовано 20.07.2007, Бюл. № 20).

Недостатком известной массы является высокая пористость керамического камня на её основе, за счёт чего влага при дожде или повышенной влажности воздуха проникает в изделие в результате чего существенно увеличивается теплопроводность изделий, снижается морозостойкость, кроме того, на пористой поверхности со временем осаждается трудноудаляемая пыль и цвет изделий приобретает некрасивый серый оттенок. Увеличение степени спекания за счёт повышение температуры обжига приводит к снижению пористости и водопоглощению, но при этом существенно возрастает и теплопроводность, что не желательно.

Сущность изобретения заключается в том, что керамическая масса, включающая опал-кристобалитовую породу – опоку, измельченную до зернового состава не более 2,5 мм, и поверхностно-активное вещество – суперпластификатор С-3 дополнительно содержит буру – десятиводный тетраборат натрия, при следующем соотношении компонентов, мас. %:

– указанная опока – 65,0-82,6

– суперпластификатор С-3 – 0,8-1,2

– бура - десятиводный тетраборат натрия – 0,4-2,0

– вода – 16,2-31,8.

Технический результат заключается в повышении морозостойкости, снижении водопоглощения.

Изменяя зерновой состав измечённой опоки можно регулировать прочность изделий за счёт степени спекания, так как дисперсность частиц является одним из важнейших факторов, влияющих на степень спекания и в определённой мере формовочные свойства керамических масс на основе опок. Введение суперпластификатора С-3 позволяет в значительной степени снизить внешнее (между массой и стенками формы) и внутреннее трение (между частицами) при формовании и существенно улучшить формовочные свойства керамических масс на основе опок.

Введение в состав керамической массы буры (десятиводный тетраборат натрия) в водорастворимом состоянии в указанном количестве и преимущественно одно- двухсторонняя сушка изделий, которая приводит к миграции буры к лицевым поверхностным слоям изделий за счет её водорастворимости, в результате чего возрастает её процентное содержание и повышается спекаемость, при этом в поверхностных слоях существенно снижается водопоглощение – до 1-6 %, повышается морозостойкость изделий, а лицевые грани изделий приобретают полиструктурированную полублестящую или полуматовую привлекательную поверхность через которую вода не проникает в толщу изделий и с которой легко удаляются загрязнения.

Характеристики исходных материалов.

1. Опоки.

Лёгкие тонкопористые не размокающие в воде породы, состоящие в основном из мельчайших (менее 0,005 мм) частиц опал-кристобалита. Средняя плотность их составляет 1100-1600 кг/м3, предел прочности при сжатии в сухом состоянии 5-20 МПа, пористость составляет 40-55 %. Помимо опалового кремнезёма постоянной составляющей опок являются глинистые минералы, содержавшиеся в том или ином количестве. В качестве примеси могут присутствовать песчано-алевритовый и карбонатный материал, частички которого обычно не превышают размера 0,01 мм. В связи с этим выделяются различные литологические разности кремнистых пород – глинистые, карбонатные и смешанные. Разнообразие состава обуславливает широкий диапазон физико-технических и технологических свойств. Усредненный химический состав опок приведен в таблице 1.

Таблица 1

Усредненный химический состав опок, % по массе

п.п.п. SiO2 общ.,
опал.
Al2O3 Fe2O3 CaO MgO SO3
общ.
К2О Na2O
2-22 51-88;
20-70
4-15 1-6 0,5-25 0,1-5 0,1-2 0,5-3 0,1-1,5

Россия располагает крупнейшей сырьевой базой кремнистых опал-кристобалитовых пород – опок. На территории России они широко встречаются в районах Поволжья и Дона, Западной Сибири, на юге России, в центральных и западных областях Европейской части России, Ленинградской области, Дальнем Востоке, Кольском полуострове, на Камчатке. Находят различное применение, в том числе и для облегчённой керамики, однако для получения лицевого керамического кирпича со спечённым лицевым слоем пока не используются.

2. Суперпластификатор С-3 (ТУ 2481-111-07511608-2012) получают на основе натриевых солей продукта конденсации нафталинсульфокислоты и формальдегида. Жидкость или водорастворимый порошок, не выделяет при хранении вредных газов и паров. Водные растворы С-3 не изменяют свойств при нагревании до 85°С, пожаро- и взрывобезопасны. Суперпластификатор С-3 является одной из специальных отечественных химических добавок для бетонов, производимой методом химического синтеза. Используют в производстве железобетонных, бетонных изделий и конструкций: плит, панелей перекрытий, массивных густоармированных конструкций, возведение монолитных строений, изготовления бетонных полов и покрытий, а также при производстве тротуарной плитки и малых архитектурных форм.

3. Бура техническая 5 или 10-водная (ГОСТ 8429-77), минерал состава Na2B4O7 10H2O – декагидрат тетрабората натрия. Имеет две метастабильные модификации: β и γ. β-модификация является ромбической с температурой плавления 664оС, γ-модификация — моноклинная с температурой плавления 710оС. Растворимость в воде составляет 3,2г/100мл (при 25оС) 10,5г/100мл (при 50оС). Десятиводную соль Na2B4O7 10H2O получают из природных минералов, например, буры или кернита, осуществляя их перекристаллизацию. Также для этой цели применяют химическое взаимодействие некоторых природных боратов (ашарита и улексита) с карбонатом или гидрокарбонатом натрия.

Пример. Для экспериментальной проверки заявляемых составов масс в производственных условиях кирпичного завода ООО «Элитная строительная керамика» (г. Новочеркасск) были изготовлены стандартные образцы кирпича полнотелого размером 250 х 120 х 65 мм с различным соотношением вышеперечисленных компонентов по технологии мягкого формования. В качестве сырья была использована опока Журавского месторождения Ростовской области. Зерновые составы измельчённой опоки и влияние зернового состава и формовочной влажности на плотность и предел прочности при сжатии образцов приведены в таблице 2.

Таблица 2

Зерновой состав измельчённой опоки

Группа
порошка
Содержание фракций, мм, % по массе
2,5-1,25 1,25-0,63 0,63-0,315 0,315-0,16 0,16-0,08 < 0,08
I 12,7-13,8 10,5-12,9 14,8-16,3 13,6-15,1 20,6-22,3 21,6-27,8
II 14,3-17,9 15,4-17,0 16,5-19,4 21,0-24,2 26,5-32,8
III 18,1-21,8 23,5-27,0 23,9-26,4 28,8-34,5
IV 27,0-31,1 30,1-33,2 42,9-49,7

Образцы изготовлялись следующим образом. Предварительно опока подсушивалась до воздушно-сухого состояния, затем измельчалась на щековой дробилке и дезинтеграторе (пропускалась один-два раза) после чего просеивалась на ситах с заданным размером ячеек – 0,315-2,5 мм. Затем отдозированным суперпластификатором С-3 в жидком виде и отдозированным насыщенным раствором буры измельчённая опока равномерно увлажнялась до необходимой формовочной влажности в зависимости от выбранного способа формования изделий. Приготовленная масса вылеживалась в герметичных емкостях 6-12 часов и далее из неё формовались изделия. Формование изделий можно производить любым способом, но наибольший декоративный эффект лицевой поверхности достигается по технологии мягкого формования.

После формовки изделий с помощью распыления на одну постельную грань изделия, одну или две тычковые грани и одну ложковую грань наносится с водно-масляная эмульсия (или другое водонепроницаемое вещество – раствор парафина, акрила и др.) для исключения или снижения испарения влаги при сушке с этих граней изделий. После чего изделия укладываются для сушки на сушильные поддоны на постельную грань. Ввод буры в массу и данные мероприятия приводят к тому, что при сушке бура в виде водного раствора мигрирует к одной ложковой и одной тычковой грани изделия, концентрируясь в приповерхностных слоях толщиной 5-10 мм. После сушки в течения 48 часов изделия обжигались в течение 48 часов с выдержкой при максимальной температуре 1000°С 2 часа.

Свойства изделий на полученных составах приведены в таблице 3.

Таблица 3

Составы и свойства изделий

Составы предлагаемые Физико-механические характеристики
Опока,
% по массе
Супер-
пласти-фикатор С-3, % по массе
Бура - десятиводный тетраборат натрия, % по массе Вода, % по массе Rсж, МПа Водопоглощение, % Плотность, кг/м3 Коэффициент теплопроводности (λ), Вт/(м*К) Морозостойкость изделий, циклы Вид поверхности
1 85,0 0,8 0,2 14 18,6 14,2 1240 0,28 35 Гладкая, матовая, обычная, непривлекательная
2 82,6 0,8 0,4 16,2 23,4 6,3 1280 0,34 40 Полуматовая, полублестящая, привлекательная
3 73,8 1,0 1,2 24,0 48,5 1,12 1480 0,55 75 Полуматовая, полублестящая, полиструктурированная, привлекательная
4 65,0 1,2 2,0 31,8 38,7 2,4 1440 0,51 50 Полуматовая, полублестящая, полиструктурированная, привлекательная
5 60 1,3 2,2 36,5 35,6 2,9 1420 0,49 45 Блестящая,обычная, непривлекательная
Патент RU 2303020
1 78-92 0,1-2,5 - 5,5-21,9 7,0-37,0 16,1-23,5 1250-1480 0,47-0,62 15-35 Гладкая, матовая,обычная, непривлекательная

Керамическая масса, включающая опал-кристобалитовую породу – опоку, измельчённую до зернового состава не более 2,5 мм, поверхностно-активное вещество суперпластификатор С-3, отличающаяся тем, что масса дополнительно содержит буру – десятиводный тетраборат натрия, при следующем соотношении компонентов, мас.%:

– указанная опока – 65,0-82,6

– суперпластификатор С-3 – 0,8-1,2

– бура - десятиводный тетраборат натрия – 0,4-2,0

– вода – 16,2-31,8.



 

Похожие патенты:

Изобретение относится к строительным материалам, а именно к ячеистым керамическим изделиям, и может быть использовано при изготовлении элементов ограждающих строительных конструкций. Способ получения строительных газокерамических материалов включает приготовление шихты путем смешивания воды, газообразователя – перекиси водорода и разжижающе-флюсующей добавки – сухого карбоната натрия с аморфной кремнеземистой породой – размолотой до порошкообразного состояния с величиной удельной поверхности частиц 5000-7000 см2/г опокой, загрузку полученной массы в пластиковую форму, установленную на виброплощадке, вспенивание массы при воздействии вибрации в течение 3-5 мин, извлечение пористого сырца из формы, его сушку и обжиг при температуре 900-920°C, при следующем соотношении компонентов, мас.%: указанная опока 64,5-65,3, указанная добавка 0,6-0,8, указанный газообразователь 1,3-2,4, вода – остальное.

Изобретение относится к способу изготовления детали из композитного материала. Способ включает следующие этапы: нагнетание внутрь волокнистой структуры шликера, содержащего, по меньшей мере, порошок из огнеупорных керамических частиц или из частиц огнеупорного керамического предшественника в виде взвеси в жидкой фазе; затем фильтрацию жидкой фазы шликера и задержание порошка из огнеупорных керамических частиц или частиц огнеупорного керамического предшественника внутри указанной структуры для получения предварительно отформованной волокнистой заготовки с наполнением из огнеупорных керамических частиц или частиц из огнеупорного керамического предшественника после уплотнения волокнистой структуры путём обработки огнеупорных керамических частиц в волокнистой структуре для формирования огнеупорной матрицы в этой структуре.

Настоящее изобретение относится к гранулированному теплоизоляционному материалу, который может быть использован для теплоизоляции зданий, промышленных предприятий, трубопроводов, содержащему гидрофобизированный диоксид кремния и 15-30% по весу по меньшей мере одного глушителя, обеспечивающего непрозрачность в ИК-диапазоне, выбранного из группы, состоящей из карбида кремния, диоксида титана, графитов, углеродной сажи и их смесей.

Изобретение относится к способу изготовления реставрации из заготовки, состоящей из литийсиликатной стеклокерамики или содержащей литийсиликатную стеклокерамику, и применению заготовки, полученной таким способом. Способ заключается в расплавлении исходного литийсиликатного стекла, быстром охлаждении стекломассы и измельчении ее в порошок.
Изобретение относится к производству огнеупорных изделий и может быть использовано при изготовлении строительной керамики с повышенными огнеупорными и теплоизолирующими свойствами. Технический результат: получение огнеупорных изделий на основе цеолитсодержащих пород и высокомодульных полисиликатов по безобжиговой технологии и снижение энергозатрат.
Изобретение относится к производству легковесного керамического теплоизоляционного и теплоизоляционно-конструкционного материала, который может быть использован для тепловой изоляции зданий, сооружений и различных промышленных установок. Способ включает смешение предварительно обработанного на камневыделительных вальцах кремнеземсодержащего компонента в виде трепела и щелочного компонента в виде соды кальцинированной технической, гомогенизацию сырьевой смеси и обжиг в металлических формах.

Изобретение относится к получению динасового огнеупорного материала для применения в верхнем строении ванных стекловаренных печей. В соответствии с заявленным способом содержащее карбид кремния зернистое вещество смешивают с по крайней мере одним зернистым кремнезёмистым сырьём и связкой или смесью связок с получением формовочной массы, из которой прессуют кирпичи, которые затем сушат и обжигают при температуре выше 1200°С.
Изобретение относится к производству емкостей для термообработки сыпучих материалов, например, для кристаллизации аморфного стекла литийалюмосиликатного состава. Предложен способ изготовления емкостей для термообработки сыпучих материалов, включающий измельчение закристаллизованного стекла, либо забракованных после термообработки изделий, либо отливок произвольной формы, получаемых из шликеров, оставшихся в подпиточных емкостях формовых комплектов после окончания набора стеклокерамических изделий мокрым способом до получения водного шликера с плотностью 2,10-2,20 г/см3, тониной помола с остатком на сите 0,063 мм 7,1-12,5 %, формование заготовок в гипсовых формах, их сушку и термообработку, термообработку отформованных заготовок осуществляют при 800-1100 °С в течение 0,5-2 часов.

Группа изобретений относится к области ракетной техники, преимущественно антенных обтекателей из кварцевой керамики и может быть использована в других отраслях промышленности. Техническим результатом является повышение механических, радиотехнических характеристик антенных обтекателей, технологичности изделий из кварцевой керамики.
Группа изобретений относится к связующему, которое содержит жидкое стекло и дополнительно фосфат или борат или оба, к способу послойного формирования форм и стержней (варианты). Способ содержит смесь конструкционного материала, которая по меньшей мере содержит огнеупорный основной формовочный материал и связующее с заданными свойствами.

Изобретение относится к составам сырьевых смесей для производства строительных материалов на основе гипса и может быть использовано в производстве отделочных плит и панелей с рельефной лицевой поверхностью, в том числе 3D-панелей, а также объемных блоков и других элементов отделки и моделирования пространства как внутренних, так и наружных частей зданий.
Наверх