Способ калибровки магнитных рамочных антенн

Изобретение относится к области радиотехники, а конкретно к средствам метрологического обеспечения измерителей напряженности магнитного поля, и может быть использовано при калибровке магнитных рамочных антенн. Сущность: использование трех магнитных рамочных антенн для проведения серии из трех измерений. В каждом из измерений одна из антенн является передающей и подключена к измерительному генератору, а вторая антенна является приемной и подключена к входу измерительного приемника. На основании полученных с помощью измерительного приемника результатов измерений напряжения с выхода каждой из антенн, используемой в качестве приемной, рассчитывают коэффициенты калибровки каждой из трех калибруемых антенн. Технический результат: повышение точности калибровки, расширение частотного диапазона калибровки, расширение номенклатуры типов калибруемых магнитных рамочных антенн. 3 ил.

 

Предлагаемое изобретение относится к области радиотехники, а конкретно к средствам метрологического обеспечения измерителей напряженности магнитного поля, и может быть использовано при калибровке магнитных рамочных антенн.

Известен способ калибровки магнитных антенн в диапазоне частот от 10 Гц до 30 МГц, заключающийся в возбуждении рамочной антенной равномерного магнитного поля, напряженность которого вычисляется по величине тока, протекающего в излучающей рамке, и ее конструктивным параметрам, измерении напряженности создаваемого магнитного поля с помощью калибруемой антенны [1] и определении коэффициентов калибровки расчетным методом [2].

Недостатками указанного способа являются:

низкая конструктивная надежность полеобразующей системы;

необходимость создания отдельной измерительной линии для определения величины тока в излучающей антенне;

необходимость значительных площадей для размещения установки.

Известен способ калибровки магнитных антенн в диапазоне частот от 10 Гц до 30 МГц, заключающийся в создании равномерного магнитного поля с известной напряженностью в ограниченной области пространства с помощью установки на основе колец Гельмгольца, измерении напряженности создаваемого магнитного поля с помощью калибруемой антенны и определении коэффициентов калибровки расчетным методом. [3]

Недостатками указанного способа являются:

зависимость частотного диапазона установки от её геометрических размеров;

небольшие размеры рабочей зоны установки.

Указанные недостатки приводят к снижению точности калибровки магнитных рамочных антенн, ограничению номенклатуры типов калибруемых магнитных рамочных антенн, увеличению затрат на создание, обслуживание и эксплуатацию установок.

Известен способ калибровки магнитных рамочных антенн на основе метода замещения. Способ заключается в возбуждении электромагнитного поля передающей вспомогательной рамочной антенной в плоскости образцовой антенны с известными характеристиками, измерении напряжения с выхода образцовой антенны с помощью анализатора спектра (измерительного приемника), возбуждении электромагнитного поля передающей вспомогательной рамочной антенной такой же величины в плоскости калибруемой антенны, измерении напряжения с выхода калибруемой антенны с помощью анализатора спектра (измерительного приемника) и расчете коэффициентов калибровки калибруемой антенны на основе измеренных значений напряжения с выхода образцовой и калибруемой антенн и известных коэффициентов калибровки образцовой антенны. [4]

Недостатками известного способа являются:

необходимость наличия образцовой антенны с известными коэффициентами калибровки;

ограниченность потенциально достижимой погрешности калибровки погрешностью определения коэффициента калибровки образцовой антенны;

частотный диапазон образцовой антенны должен перекрывать частотный диапазон калибруемой антенны.

Указанные недостатки приводят к снижению точности калибровки магнитных рамочных антенн и увеличению затрат на калибровку.

Данный способ является наиболее близким к предлагаемому изобретению и выбран в качестве прототипа.

Целью предлагаемого изобретения является повышение точности калибровки магнитных рамочных антенн, расширение частотного диапазона калибровки магнитных рамочных антенн, расширение номенклатуры типов калибруемых магнитных рамочных антенн, а так же упрощение конструкции, снижение стоимости создания, обслуживания и эксплуатации перспективных установок для калибровки магнитных рамочных антенн, реализуемых на основе предлагаемого способа.

Сущность изобретения состоит в следующем. При калибровке используются три магнитных рамочных антенны с неизвестными коэффициентами калибровки. При проведении серии из трех попарных измерений последовательно измеряется напряжение с выхода каждой из магнитных рамочных антенн и производится расчет коэффициентов калибровки каждой из трех калибруемых антенн на основании полученных результатов измерений.

Серия измерений проводится по схеме: 1-2, 1-3, 2-3 - где, в начале, обозначается приемная антенна, а затем излучающая. При этом приемная антенна подключается к анализатору спектра, а излучающая к калибратору напряжения. Измерения проводятся в диапазоне частот, общем для всех трех антенн.

Предлагаемый способ позволяет проводить измерения коэффициента калибровки как пассивных, так и активных рамочных антенн. При этом активной антенной может являться только одна из трех, участвующих в измерениях. В случае проведения измерений коэффициентов калибровки активной антенны, она должна обозначаться под номером «1» и работать только на прием сигнала от излучающей антенны.

При каждом измерении две антенны располагаются напротив друг друга коаксиально и соосно, на высоте не менее 1,75±0,1 м и на расстоянии в соответствии с соотношением:

, (1)

где r - радиус антенны, м.

Измерение коэффициентов калибровки каждой из трех магнитных рамочных антенн предлагаемым способом проводится следующим образом.

Проводят калибровку измерительного кабеля.

Для этого соединяют калибруемые измерительные ВЧ-кабели 6 и 7 и подключают к входу анализатора спектра 4 и к выходу калибратора напряжения 5. Включают на калибраторе 5 широкополосный режим и настраивают его на начальную частоту измерения из диапазона частот измеряемых антенн. Затем устанавливают напряжение с выхода калибратора 5 Uк из диапазона напряжений, в зависимости от динамического диапазона измеряемых антенн. Рекомендуемое значение напряжения с выхода калибратора 5 принимается равным 1 В. Настраивают анализатор спектра 4 на частоту калибратора напряжения 5. На анализаторе спектра 4 включают программный аттенюатор на 5 дБ или больше, в зависимости от величины Uк. При этом величину ослабления выбирают кратной 5 дБ. Измеряют величину сигнала Uкалиб(f0), где f0 - начальная частота диапазона измерений, МГц. Повторяют измерения Uкалиб во всех частотных точках, указанных в нормативных документах на измеряемые антенны.

Далее измеряют напряжение с выхода антенн. Для этого собирают схему в соответствии с фиг. 1. Устанавливают друг напротив друга антенну 1 и антенну 2 на расстоянии, рассчитанном в соответствии с формулой (1). При этом антенны 1 и 2 устанавливают соосно, что может быть проверено с помощью лазерного дальномера. Антенну 1 подключают к входу анализатора спектра 4, а антенну 2 к выходу калибратора напряжения 5. Устанавливают напряжение с выхода калибратора 5, равное Uк. Настраивают анализатор спектра 4 на частоту калибратора напряжения 5. На частотах свыше 200 Гц на анализаторе спектра 4 включают программный аттенюатор на 5 дБ или больше, в зависимости от динамического диапазона измеряемых антенн. При этом величину ослабления выбирают кратной 5 дБ. Измеряют величину сигнала U12(f0), где f0 - начальная частота диапазона измерений, МГц. Повторяют измерения U12 во всех частотных точках, указанных в нормативных документах на измеряемые антенны.

Аналогичным образом проводят измерения U13 (фиг. 2) и U23 (фиг. 3). При этом антенны располагают по схеме 1-3, 2-3 (где, в начале, обозначается приемная антенна, а затем излучающая), на расстоянии, рассчитанном в соответствии с формулой (1).

Проводят расчет коэффициентов калибровки рамочных антенн №1, 2 и 3 в каждой частотной точке с помощью уравнений:

, (2)

, (3)

, (4)

где r1, r2, r3 - радиусы антенн, в соответствии с нормативно-технической документацией, м; d12, d13, d23 - расстояние между антеннами, м; a12, a13, a23 - коэффициенты, описывающие магнитное поле излучающей антенны, усредненное по площади приемной рамки; k - волновое число; f - частота измерений, Гц; μ0 - магнитная постоянная, Гн/м; Z - нагрузка измерительной линии, Ом; U12, U13, U23 - напряжение с выхода приемной антенны, В.

При необходимости производят пересчет значений коэффициента калибровки каждой из трех антенн, определенных относительно напряженности магнитного поля (1/Ом·м) в коэффициенты калибровки относительно напряженности электрического поля в логарифмическом масштабе (дБ(м-1)) по формуле [5]:

, (5)

где i - номер антенны.

Новизна изобретения заключается в новом подходе к калибровке магнитных рамочных антенн, основанном на том, что калибруемые антенны в процессе калибровки сами осуществляют функцию полеобразующей системы, позволяющем проводить калибровку магнитных рамочных антенн с априорно неизвестными коэффициентами калибровки.

Изобретательский уровень характеризуется использованием трех магнитных рамочных антенн с априорно неизвестными коэффициентами калибровки для проведения серии из трех попарных измерений, в каждом из которых одна из антенн, подключенная к калибратору напряжения (измерительному генератору), создает магнитное поле в плоскости второй антенны, являющейся приемной и подключенной к входу анализатора спектра (измерительному приемнику), с последующим расчетом коэффициентов калибровки каждой из трех калибруемых антенн на основании полученных результатов измерений напряжения с выхода каждой из антенн, использованной в качестве приемной.

Данное изобретение является промышленно применимым при разработке перспективных установок для калибровки магнитных рамочных антенн, используемых при решении задач электромагнитной совместимости авиационного радиоэлектронного оборудования, измерений параметров электромагнитного поля при проведении исследований, в системах радиочастотной идентификации (RFID), сетях беспроводной передачи данных, а также в задачах технической защиты информации.

Источники информации

1. Бузинов В.С. Установка для поверки рамочных ИНП по образцовому полю индукции / Измерительная техника. 1961. №6. С. 46-48.

2. Greene F.M. The Near-Zone Magnetic Field of a Small Circular-Loop Antenna. JOURNAL OF RESEARCH of National of Bureau of Standards - C. Engineering and Instrumentation, October-December 1967, vol. 71C, no. 4, pp. 319-326.

3. Fano W.G. Standard Electric and Magnetic Field for Calibration. IntechOpen, 2018.

4. Fujii K., Sakai K., Sugiyama T., Sebata K., Nishiyama I. Calibration of Loop Antennas for EMI Measurements in the Frequency Range Below 30 MHz. Journal of the National Institute of Information and Communications Technology 63 (1), 2016, pp. 71-81.

5. ГОСТ CISPR 16-1-4-2013. Совместимость технических средств электромагнитная. Требования к аппаратуре для измерения параметров индустриальных радиопомех и помехоустойчивости и методы измерений. Часть 1-4. Аппаратура для измерения параметров индустриальных радиопомех и помехоустойчивости. Антенны и испытательные площадки для измерения излучаемых помех. - М.: Стандартинформ, 2014.

Способ калибровки магнитных рамочных антенн, при котором коэффициенты калибровки приемной антенны определяются на основе измерений напряжения с выхода приемной магнитной рамочной антенны при возбуждении электромагнитного поля передающей магнитной рамочной антенной, отличающийся тем, что при калибровке используются три магнитные рамочные антенны с априорно неизвестными коэффициентами калибровки для проведения серии из трех попарных измерений, в каждом из которых одна из антенн является передающей и подключена к измерительному генератору, а вторая антенна является приемной и подключена к входу измерительного приемника, с последующим расчетом коэффициентов калибровки каждой из трех калибруемых антенн на основании полученных с помощью измерительного приемника результатов измерений напряжения с выхода каждой из антенн, используемой в качестве приемной.



 

Похожие патенты:

Изобретение относится к антенной технике. Способ калибровки магнитной антенны (рамочной или ферритовой) по чувствительности к напряженности магнитного поля, состоящей из катушки индуктивности, колебательного контура, настроенной в резонанс путем внесения калибруемой магнитной антенны в уже известное по напряженности и частоте магнитное поле и определения чувствительности магнитной антенны, заключается в том, что для определения волнового сопротивления магнитной антенны, волновое сопротивление соленоида известно и задается его реактивностью, в плоскость однородного магнитного поля соленоида вноситься магнитная антенна, а волновое сопротивление магнитной антенны определяется по равенству реактивных сопротивлений соленоида, создающего магнитное поле и магнитной антенны, определяемой по максимальной чувствительности калибруемой магнитной антенны..

Изобретение относится к области радиотехники, а именно к конструкциям переменных конденсаторов, и может быть использовано в различной радиоэлектронной аппаратуре. Конденсатор переменной емкости типа «бабочка», содержащий неподвижную часть в виде набора цилиндрических элементов, внутри которых размещены подвижные поршни, соединяющие «крылья бабочки», отличающийся тем, что в него дополнительно введены коллекторный двигатель с редуктором, муфта, соединенная с коллекторным двигателем с редуктором, винт, соединенный с муфтой, изолятор, механически связанный с подвижным поршнем и винтом, первый и второй концевые выключатели, датчик измерения падающей и отраженной волны, микроконтроллер, первый вход которого соединен с выходом датчика измерения падающей и отраженной волны, второй вход - с выходом первого концевого выключателя, третий вход - с выходом второго концевого выключателя, а выход - с коллекторным двигателем с редуктором.

Изобретение относится к области передачи информации, а более конкретно - организации канала посредством модулирования низкочастотных магнитных полей, и предназначено для повышения надежности усилителя мощности передатчика ближнепольной магнитной системы связи при одновременном обеспечении широкой полосы частот.

Изобретение относится к антенной технике, в частности к кольцевым всенаправленным антеннам. Всенаправленная кольцевая антенна содержит проволочные петли, равномерно распределенные по кругу и синфазно питаемые от одной коаксиальной линии.

Использование: для разработки систем связи, использующих поле ближней зоны антенны. Сущность изобретения заключается в том, что многовитковая приемопередающая антенна содержит две разомкнутые проводящие петли и два конденсатора переменной емкости, в качестве разомкнутых проводящих петель используются катушки, и введена третья катушка, причем все три катушки намотаны на одном каркасе, и два коммутатора, а все элементы антенны размещены на одном защитном экранированном каркасе, первый контакт передающей катушки соединен с первым выходом передатчика, второй контакт передающей катушки соединен последовательно с первым контактом первого контурного конденсатора переменной емкости, второй контакт которого соединен со вторым выходом передатчика, первый контакт первого коммутатора соединен с первым контактом первой приемной катушки, второй контакт которой соединен с третьим контактом второго коммутатора, второй контакт которого соединен со вторым контактом первого коммутатора, третий контакт которого соединен с первым входом приемника и первым контактом второго контурного конденсатора переменной емкости, второй контакт которого соединен со вторым входом приемника и вторым входом второй приемной катушки, второй вход которой соединен с третьим контактом второго коммутатора.

Использование: для измерения электрического удельного сопротивления геологических формаций. Сущность изобретения заключается в том, что антенный блок содержит шпиндель инструмента, имеющий ось инструмента, и катушку, содержащую множество витков, намотанных вокруг шпинделя инструмента под углом обмотки, отклоненным от оси инструмента.

Антенна // 2681247
Изобретение относится к области радиотехники, в частности к антенной технике. Сущность изобретения заключается в том, что антенна дополнительно содержит два одинаковых кольцевых магнита, которые установлены друг к другу одноименными полюсами и разделены между собой межмагнитным зазором, посередине которого расположена плоскость межмагнитной связи, симметрично которой расположены первый и второй кольцевые магниты, при этом без гальванического контакта первая катушка индуктивности установлена соосно во внутреннее кольцо первого кольцевого магнита, а вторая катушка индуктивности установлена соосно во внутреннее кольцо второго кольцевого магнита, причем плоскость межмагнитной связи первого и второго кольцевых магнитов расположена на плоскости электромагнитной связи первой и второй катушек индуктивности, при этом первая и вторая катушки индуктивности содержат, по меньшей мере, один виток, начало отсчета номеров витков первой и второй катушек индуктивности начинается от плоскости электромагнитной связи.

Изобретение относится к медицине. Матрица антенн для электрической связи с антенной субмиллиметрового размера, встроенной в офтальмологическое устройство, содержит: основание; первую подложку, поддерживаемую основанием, при этом первая подложка имеет первую форму, выполненную с возможностью взаимодействия с офтальмологическим устройством, имеющим одну или более форм, одна из которых комплементарна первой форме; и одну или более матриц изолированных антенн субмиллиметрового размера, выполненных с возможностью обеспечивать оптимизированную связь ближнего поля между по меньшей мере одной из изолированных антенн субмиллиметрового размера в одной или более матриц и по меньшей мере одной антенной субмиллиметрового размера в офтальмологическом устройстве.

Изобретение относится к области радиотехники, а именно к рамочным антеннам, используемым в качестве источника магнитного поля. Излучающая антенна содержит две идентичные рамки, каждая из которых представляет собой металлическую трубку, имеющую поперечный разрез, делящий трубку на две изолированные друг от друга равные части, внутри которой расположен проводник, и электрически связанное с рамками согласующее устройство.

Изобретение относится к антеннам метрового диапазона волн. Рамочная антенна содержит проводящую трубку (ПТ) с первым концом и вторым концом, согнутую в кольцо с образованием зазора между первым и вторым концами, фидер, дополнительно содержит первую проводящую втулку (ППВ) и вторую проводящую втулку (ВПВ), согласующий отрезок кабеля (СОК) с первым концом и вторым концом, при этом ППВ установлена в ПТ в области первого ее конца с образованием точки гальванического контакта с ПТ, ВПВ установлена в ПТ в области второго ее конца с образованием точки гальванического контакта с ПТ, СОК проложен в ПТ через ВПВ с образованием в области зазора точки гальванического контакта между внешним проводником СОК и ВПВ, второй конец СОК разомкнут и ни с чем не соединен, в области, диаметрально противоположной указанному зазору, выполнено отверстие, фидер введен в ПТ через указанное отверстие и проложен в ПТ до первого ее конца, внешний проводник фидера в области зазора соединен с ППВ с образованием точки гальванического контакта, центральный проводник фидера проложен в области зазора с образованием точки гальванического контакта с центральным проводником СОК.

Изобретение относится к области электротехники, к калибровочной нагрузке векторного анализатора цепей, при измерениях параметров симметричных кабелей из витых пар. Калибровочная нагрузка для векторного анализатора цепей содержит первую монтажную плату с штыревыми контактами, передние участки которых параллельны друг другу и осям коаксиальных розеток векторного анализатора цепей, причем расстояние между осями передних участков равно расстоянию между осями упомянутых коаксиальных розеток, и выступающих за обрез первой монтажной платы на длину, равную длине зачистки проводов тестируемой витой пары; вторую монтажную плату с установленным на ней безвыводным нагрузочным резистором; и цепь передачи тестовых сигналов, которая соединяет задние участки штыревых контактов с безвыводным нагрузочным резистором; задние участки штыревых контактов параллельны друг другу и передним участкам, а расстояние между ними меньше расстояния между передними участками, соединение переднего и заднего участков контактов выполнено плавным переходом; в качестве цепи передачи тестовых сигналов между задним участком тестовых контактов и безвыводным нагрузочным резистором использована витая пара, характеристики которой идентичны характеристикам витых пар симметричного кабеля, тестируемого векторным анализатором цепей.
Наверх