Способ получения чистых наночастиц благородных металлов с большой долей граней (100), наночастицы, полученные этим способом, и их применение - заявка 2015140277 на патент на изобретение в РФ

1. Способ получения наночастиц чистых благородных металлов с гранями и контролируемыми размерами, включающий проведение реакции восстановления вещества-предшественника в растворе реагента, содержащем вещество предшественника в виде соли благородного металла или комплекса благородного металла, или смеси солей/или комплексов благородных металлов, и восстановитель, с получением реакционного раствора, содержащего наночастицы, характеризующийся тем, что реакцию восстановления проводят в отсутствие поверхностно-активного вещества при начальной концентрации вещества-предшественника в растворе реагента от 50 мМ до 100 мМ, при этом указанную реакцию восстановления останавливают через заданное время t, равное от 14 секунд до 2 часов, путем быстрого охлаждения с понижением температуры реакционного раствора со скоростью, превышающей или равной 0,15°C/с.
2. Способ по п. 1, отличающийся тем, что используют раствор реагента, приготовленный при комнатной или более низкой температуре, при этом перед реакцией восстановления проводят быстрое повышение температуры раствора реагента со скоростью, превышающей или равной 0,15°C/с.
3. Способ по п. 1, отличающийся тем, что реакцию восстановления проводят в проточной системе, включающей соединенные между собой контуры, через которые протекает раствор реагента и реакционный раствор, при этом указанные контуры находятся соответственно в реакционной и охлаждающей зоне проточной системы, причем длина контура в реакционной зоне, в который вводят раствор реагента, и скорость потока раствора обеспечивают заданное время реакции восстановления t, при этом зона охлаждения обеспечивает упомянутое быстрое охлаждение реакционного раствора, протекающего через находящийся в ней контур.
4. Способ по п. 2, отличающийся тем, что реакцию восстановления проводят в проточной системе, включающей соединенные между собой контуры, через которые протекает раствор реагента и реакционный раствор, при этом указанные контуры находятся соответственно в реакционной и охлаждающей зоне проточной системы, причем длина контура в реакционной зоне, в который вводят раствор реагента, и скорость потока раствора обеспечивают заданное время реакции восстановления t, при этом зона охлаждения обеспечивает упомянутое быстрое охлаждение реакционного раствора, протекающего через находящийся в ней контур.
5. Способ по п. 1, отличающийся тем, что реакцию восстановления проводят путем загрузки раствора реагента в контур, находящийся в реакционной системе, и через заданное время t контур, содержащий реакционный раствор, перемещают в систему охлаждения, где происходит быстрое понижение температуры раствора, и реакционный раствор подвергают обработке ультразвуком.
6. Способ по п. 2, отличающийся тем, что реакцию восстановления проводят путем загрузки раствора реагента в контур, находящийся в реакционной системе, и через заданное время t контур, содержащий реакционный раствор, перемещают в систему охлаждения, где происходит быстрое понижение температуры раствора, и реакционный раствор подвергают обработке ультразвуком.
7. Способ по любому из пп. 1-6, отличающийся тем, что полученные наночастицы выделяют из реакционного раствора путем центрифугирования.
8. Способ по любому из пп. 1-6, отличающийся тем, что благородный металл выбирают из группы, включающей платину, палладий, серебро, золото, рутений, осмий, иридий и родий.
9. Способ по любому из пп. 1-6, отличающийся тем, что вещество-предшественник включает соль, выбранную из группы, включающей AgNO3, AgClO4, AgHSO4, Ag2SO4, AgF, AgBF4, AgPF6, CH3COOAg, AgCF3SO3, H2PtCl6, H6Cl2N2Pt, PtCl2, PtBr2, K2PtCl4, Na2[PtCl4], Li2[PtCl4], H2Pt(OH)6, Pt(NO3)2, [Pt(NH3)4]Cl2, [R(NH3)4](HCO3)2, [Pt(NH3)4](OAc)2, (NH4)2PtBr6, K2PtCl6, PtSO4, Pt(HSO4)2, Pt(ClO4)2, H2PdCl6, H6Cl2N2Pd, PdCl2, PdBr2, K2[PdCl4], Na2[PdCl4], Li2[PdCl4], H2Pd(OH)6, Pd(NO3)2, [Pd(NH3)4]Cl2, [Pd(NH3)4](HCO3)2, [Pd(NH3)4](OAc)2, (NH4)2PdBr6, (NH3)2PdCl6, PdSO4, Pd(HSO4)2, Pd(ClO4)2, HAuCl4, AuCl3, AuCl, AuF3, (CH3)2SAuCl, AuF, AuCl(SC4H8), AuBr, AuBr3, Na3Au(S2O3)2, HAuBr4, K[Au(CN)2], RuCl2 ((CH3)2SO)4, RuCl3, [Ru(NH3)5(N2)]Cl2, Ru(NO3)3, RuBr3, RuF3, Ru(ClO4)3, OsI, OsI2, OsBr3, OsCl4, OsF5, OsF6, OsOF5, OsF7, IrF6, IrCl3, IrF4, IrF5, Ir(ClO4)3, K3[IrCl6], K2[IrCl6], Na3[IrCl6], Na2[IrCl6], Li3[IrCl6], Li2[IrCl6], [Ir(NH3)4Cl2]Cl, RhF3, RhF4, RhCl3, [Rh(NH3)5Cl]Cl2, RhCl[P(C6H5)3]3, K[Rh(CO)2Cl2], Na[Rh(CO)2Cl2] Li[Rh(CO)2Cl2], Rh2(SO4)3, Rh(HSO4)3 и Rh(ClO4)3, их гидраты или смесь их солей и/или гидратов.
10. Способ по п. 9, отличающийся тем, что вещество-предшественник представляет собой K2PtCl4.
11. Способ по любому из пп. 1-6, отличающийся тем, что восстановитель выбирают из группы, включающей этиленгликоль, гидразин, аскорбиновую кислоту, борогидрид натрия, гипофосфит натрия, тетраэтилборогидрид лития, метиловый спирт, 1,2-гексадекандиол, гидроксиламин и диметилборазан ДМАБ.
12. Способ по п. 11, отличающийся тем, что в качестве восстановителя используют этиленгликоль.
13. Способ по любому из пп. 1-6, 10 и 12, отличающийся тем, что раствор реагента содержит раствор вещества-предшественника в этиленгликоле, при этом указанное вещество-предшественник растворяют в этиленгликоле при комнатной или более низкой температуре.
14. Способ по любому из пп. 1-6, 10 и 12, отличающийся тем, что реакцию восстановления проводят при температуре от 70°C до 190°C.
15. Способ по любому из пп. 1-6, 10 и 12, отличающийся тем, что температуру реакционного раствора через время t понижают путем погружения раствора в водяную ванну при 0°C.
16. Способ по любому из пп. 1-6, 10 и 12, отличающийся тем, что раствор реагента содержит галиды, выбранные из группы, включающей фториды, хлориды, бромиды и йодиды, и/или псевдогалиды, выбранные из группы, включающей цианиды, цианаты, изоцианаты и тиооцианаты, в концентрации выше 5 мМ, предпочтительно выше 40 мМ, более предпочтительно выше 250 мМ, наиболее предпочтительно 280 мМ, или содержит насыщенный раствор солей галида и/или псевдогалида, и/или обеспечивают повышение концентрации галидов в реакционном растворе в результате восстановления вещества-предшественника.
17. Применение наночастиц чистых благородных металлов с гранями и контролируемыми размерами, полученных способом по любому из пп. 1-16, в качестве гетерогенных катализаторов.
Наверх