Способ и устройство цифровой реконструкции репрезентативного элементарного объема микроструктуры композиционного материала - заявка 2016151763 на патент на изобретение в РФ

1. Способ цифровой реконструкции репрезентативного элементарного объема (2) микроструктуры композиционного материала (3), содержащий:
этап определения (F10) элементарного объема;
этап заполнения определенного элементарного объема множеством цифровых элементов, моделирующих волоконные элементы композиционного материала, при этом каждый цифровой элемент расположен в продольном направлении вдоль главной оси, при этом этап заполнения включает в себя:
этап привязки (F30) к каждому цифровому элементу положения в определенной плоскости пространства и ориентации его главной оси в указанной плоскости; и
этап последовательного позиционирования каждого цифрового элемента в элементарном объеме в соответствии с привязанными к нему положением и ориентацией, причем этап позиционирования включает в себя введение цифрового элемента в контакт (F40) по меньшей мере с одной стенкой элементарного объема и/или по меньшей мере с одним ранее позиционированным цифровым элементом и геометрическую адаптацию (F50) цифрового элемента к указанной по меньшей мере одной стенке и/или к указанному по меньшей мере одному ранее позиционированному цифровому элементу, с которыми его вводят в контакт,
при этом при геометрической адаптации по меньшей мере один участок цифрового элемента, используемого для заполнения элементарного объема, подвергают деформации, отличной от наклона его продольной оси относительно главной оси указанного цифрового элемента.
2. Способ по п. 1, дополнительно содержащий этап (F10, F30) равномерной дискретизации элементарного объема и каждого цифрового элемента по множеству вокселов.
3. Способ по п. 2, в котором на этапе геометрической адаптации (F50) цифрового элемента обрабатывают отдельно каждый воксел указанного цифрового элемента.
4. Способ по п. 2, в котором геометрическая адаптация включает в себя позиционирование (F50) по меньшей мере двух подмножеств (С2-1, С2-2) вокселов цифрового элемента в плоскостях пространства, смещенных вертикально относительно друг друга.
5. Способ по п. 4, в котором перед позиционированием указанного подмножества
вокселов в указанной плоскости пространства геометрическая адаптация включает в себя предварительную проверку наличия по меньшей мере одного воксела в указанной плоскости, не занятого вокселом ранее позиционированного цифрового элемента или стенкой элементарного объема, при этом указанный не занятый воксел вертикально совмещен с вокселом указанного подмножества вокселов.
6. Способ по п. 4, в котором по меньшей мере один воксел указанного подмножества находится в контакте с вокселом уже позиционированного цифрового элемента или со стенкой элементарного объема.
7. Способ по п. 4, дополнительно содержащий этап введения (F50) по меньшей мере одного соединительного воксела между двумя подмножествами вокселов.
8. Способ по п. 4, в котором, если плоскости пространства смещены вертикально на число вокселов, превышающее заданное число вокселов, цифровой элемент исключают из элементарного объема (F70).
9. Способ по п. 1, дополнительно содержащий этап сглаживания (F80) поверхности по меньшей мере одного цифрового элемента, вводимого в контакт с цифровым элементом, ранее позиционированном в элементарном объеме, по меньшей мере один участок которого подвергся деформации во время геометрической адаптации, причем указанное сглаживание осуществляют при деформации.
10. Способ по п. 9, в котором, когда цифровой элемент дискретизирован на множестве вокселов, сглаживание включает в себя усечение по меньшей мере одного воксела указанного по меньшей мере одного участка, который подвергся деформации, в плоскости, диагональной к вокселу.
11. Способ по п. 1, дополнительно содержащий этап пост-обработки (F100) элементарного объема, содержащий введение разделительного элемента заданного размера между по меньшей мере двумя цифровыми элементами, введенными в контакт в элементарном объеме.
12. Способ по п. 1, в котором положения, привязываемые к цифровым элементам на этапе привязки, выбирают в соответствии с равномерным пространственным распределением, причем это равномерное распределение корректируют при обнаружении заданного события в зависимости от пространственного распределения ранее позиционированных цифровых элементов.
13. Носитель информации, считываемый компьютером и содержащий записанную на нем компьютерную программу, исполнение команд которой вызывает выполнение процессором этапов способа цифровой реконструкции по п. 1.
14. Устройство (1) цифровой реконструкции репрезентативного элементарного
объема (2) микроструктуры композиционного материала (3), содержащее:
модуль (1А) определения элементарного объема;
модуль (1В) заполнения определенного элементарного объема множеством цифровых элементов, моделирующих волоконные элементы композиционного материала, при этом каждый цифровой элемент расположен в продольном направлении вдоль главной оси, при этом модуль заполнения выполнен с возможностью:
привязки к каждому цифровому элементу положения в определенной плоскости пространства и ориентации его главной оси в указанной плоскости; и
последовательного позиционирования каждого цифрового элемента в элементарном объеме в соответствии с привязанными к нему положением и ориентацией, при этом модуль заполнения выполнен с возможностью введения, во время позиционирования, цифрового элемента в контакт по меньшей мере с одной стенкой элементарного объема и/или по меньшей мере с одним ранее позиционированным цифровым элементом и с возможностью геометрической адаптации цифрового элемента к указанной по меньшей мере одной стенке и/или к указанному по меньшей мере одному ранее позиционированному цифровому элементу, с которыми он введен в контакт,
при этом во время геометрической адаптации по меньшей мере один участок цифрового элемента, используемого для заполнения элементарного объема, подвергается деформации, отличной от наклона его продольной оси относительно главной оси указанного цифрового элемента.
Наверх