Катализатор с бимодальным распределением пор, способ его получения путем перемешивания с активной фазой и его применение в гидрообработке углеводородных остатков - заявка 2017100960 на патент на изобретение в РФ

1. Способ получения катализатора со смешиваемой активной фазой, содержащего по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор и матрицу по существу из обожженного оксида алюминия, включающий следующие этапы:
a) этап растворения кислотного предшественника алюминия, выбранного из сульфата алюминия, хлорида алюминия и нитрата алюминия, в воде при температуре от 20°C до 90°C, значении pH от 0,5 до 5, в течение периода продолжительностью от 2 до 60 минут;
b) этап регулирования значения pH путем добавления в суспензию, полученную на этапе a), по меньшей мере одного щелочного предшественника, выбранного из алюмината натрия, алюмината калия, аммиака, гидроксида натрия и гидроксида калия, при температуре от 20°C до 90°C и значении pH от 7 до 10 в течение периода продолжительностью от 5 до 30 минут;
c) этап соосаждения суспензии, полученной на этапе b), путем добавления в суспензию по меньшей мере одного щелочного предшественника, выбранного из алюмината натрия, алюмината калия, аммиака, гидроксида натрия и гидроксида калия, и по меньшей мере одного кислотного предшественника, выбранного из сульфата алюминия, хлорида алюминия, нитрата алюминия, серной кислоты, соляной кислоты и азотной кислоты, причем по меньшей мере один из кислотного или щелочного предшественников содержит алюминий, относительный расход кислотного и щелочного предшественников выбирают так, чтобы получить значение pH реакционной среды в интервале от 7 до 10, и расход кислотного и щелочного предшественника или предшественников, содержащих алюминий, регулируют так, чтобы получить конечную концентрацию оксида алюминия в суспензии от 10 до 38 г/л;
d) этап фильтрации суспензии, полученной на этапе c) соосаждения, с получением алюмогеля;
e) этап сушки указанного алюмогеля, полученного на этапе d), с получением порошка,
f) этап термообработки порошка, полученного на этапе e), при температуре от 500°C до 1000°C, в течение периода продолжительностью от 2 до 10 ч, в присутствии или в отсутствие потока воздуха, содержащего до 60 об.% воды, с получением обожженного пористого оксида алюминия;
g) этап перемешивания полученного обожженного пористого оксида алюминия с раствором, содержащим по меньшей мере один предшественник металла активной фазы, с получением пасты;
h) этап формования полученной пасты,
i) этап сушки формованной пасты при температуре менее или равной 200°C, с получением сухого катализатора,
j) необязательный этап термообработки сухого катализатора при температуре от 200°C до 1000°C в присутствии или в отсутствие воды.
2. Способ по п. 1, в котором концентрация оксида алюминия в суспензии алюмогеля, полученной на этапе c), составляет от 13 до 35 г/л.
3. Способ по п. 2, в котором концентрация оксида алюминия в суспензии алюмогеля, полученной на этапе c), составляет от 15 до 33 г/л.
4. Способ по одному из пп. 1-3, в котором кислотный предшественник выбран из сульфата алюминия, хлорида алюминия и нитрата алюминия.
5. Способ по одному из пп. 1-4, в котором щелочной предшественник выбран из алюмината натрия и алюмината калия.
6. Способ по одному из пп. 1-5, в котором на этапах a), b), c) водная реакционная среда является предпочтительно водой, и указанные этапы проводят при перемешивании в отсутствие органической добавки.
7. Катализатор гидроконверсии с бимодальной пористой структурой, содержащий:
- оксидную матрицу по существу из обожженного оксида алюминия,
- активную гидрирующую-дегидрирующую фазу, содержащую по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор,
причем указанная активная фаза по меньшей мере частично распределена посредством смешивания в указанной оксидной матрице по существу из обожженного оксида алюминия,
причем указанный катализатор имеет: удельную поверхность SBET более 100 м2/г, среднеобъемный диаметр мезопор от 12 до 25 нм включительно, среднеобъемный диаметр макропор от 250 до 1500 нм включительно, объем мезопор, измеренный интрузией на ртутном порозиметре, более или равный 0,55 мл/г, и полный объем пор, измеренный методом ртутной порозиметрии, более или равный 0,70 мл/г.
8. Катализатор гидроконверсии по п. 7, имеющий среднеобъемный диаметр мезопор, определенный интрузией на ртутном порозиметре, от 13 до 17 нм включительно.
9. Катализатор гидроконверсии по одному из пп. 7-8, объем макропор в котором составляет от 10% до 40% от полного объема пор.
10. Катализатор гидроконверсии по одному из пп. 7-9, у которого объем мезопор составляет более 0,70 мл/г.
11. Катализатор гидроконверсии по одному из пп. 7-10, не содержащий микропор.
12. Катализатор гидроконверсии по одному из пп. 7-11, в котором содержание металла группы VIB, выраженное в триоксиде металла группы VIB, составляет от 2 до 10 вес.% от полного веса катализатора, содержание металла группы VIII, выраженное в оксиде металла группы VIII, составляет от 0,0 до 3,6 вес.% от полного веса катализатора, и содержание элемента фосфор, выраженное в пентоксиде фосфора, составляет от 0 до 5 вес.% от полного веса катализатора.
13. Катализатор гидроконверсии по одному из предыдущих пунктов, в котором активная гидрирующая-дегидрирующая фаза состоит из молибдена, или никеля и молибдена, или кобальта и молибдена.
14. Катализатор гидроконверсии по п. 13, в котором активная гидрирующая-дегидрирующая фаза дополнительно содержит фосфор.
15. Способ гидрообработки тяжелого углеводородного сырья, выбранного из атмосферных остатков, вакуумных остатков с прямой перегонки, деасфальтированных масел, остатков с конверсионных процессов, таких, например, как остатки от коксования, гидроконверсии в неподвижном слое, в кипящем слое или же в движущемся слое, используемых по отдельности или в смеси, причем способ включает контактирование указанного сырья с водородом и катализатором, который может быть получен по одному из пп. 1-6, или катализатором по одному из пп. 7-14.
16. Способ гидрообработки по п. 15, осуществляемый частично в кипящем слое при температуре от 320°C до 450°C, парциальном давлении водорода от 3 МПа до 30 МПа, объемной скорости от 0,1 до 10 объемов сырья на объем катализатора в час и при отношении газообразного водорода к жидкому углеводородному сырью от 100 до 3000 нормальных кубических метров на кубический метр.
17. Способ гидрообработки по п. 15 или 16, осуществляемый по меньшей мере частично в неподвижном слое при температуре от 320°C до 450°C, парциальном давлении водорода от 3 МПа до 30 МПа, при объемной скорости от 0,05 до 5 объемов сырья на объем катализатора в час и при отношении газообразного водорода к жидкому углеводородному сырью от 200 до 5000 нормальных кубических метров на кубический метр.
18. Способ гидрообработки тяжелого углеводородного сырья типа остатков в неподвижном слое по п. 17, включающий в себя по меньшей мере:
a) стадию гидродеметаллизации,
b) стадию гидрообессеривания,
причем указанный катализатор используют по меньшей мере на одной из указанных стадий a) и b).
Наверх