Способ и устройство синхронной высокоскоростной фотосъемки вращения микрочастицы в поле гидроциклона - заявка 2017103913 на патент на изобретение в РФ

1. Способ синхронной высокоскоростной фотосъемки вращения микрочастицы в поле гидроциклона, содержащий:
(1) использование прозрачной микрочастицы, содержащей два внутренних ядра, обладающих одинаковым диаметром и расположенных центросимметрично, в качестве частицы для испытания на вращение;
(2) синхронный прием двух групп из серий двумерных изображений движения микрочастицы в поле гидроциклона с использованием двух перпендикулярно расположенных высокоскоростных цифровых фотокамер; и
(3) реконструкцию трехмерной траектории движения микрочастицы из двух групп серий синхронных изображений и одновременно определение скорости вращения микрочастицы в поле циклона.
2. Способ по п. 1, в котором частица для испытания на вращение представляет собой сферическую частицу, обладающую прозрачной или полупрозрачной оболочкой и содержащую две центросимметрично расположенные частицы внутреннего ядра, которые обладают насыщенным цветом и одинаковым диаметром, причем частица для испытания обладает диаметром менее 500 микрон и высокой микродисперсностью (коэффициент вариации <5%).
3. Способ по п. 1, в котором две высокоскоростные цифровые фотокамеры расположены перпендикулярно, погрешность синхронной фотосъемки составляет менее 10 микросекунд, а глубина резкости двух высокоскоростных фотокамер составляет не менее 20% от диаметра поля циклона.
4. Способ по п. 1, при этом в способе реконструируют траекторию трехмерного движения в зоне, подлежащей испытанию, путем подгонки двумерных траекторий движения микрочастицы в двух группах серий синхронных изображений.
5. Способ по п. 1, при этом в способе определяют скорость вращения микрочастицы путем анализа частоты перекрытий и разделений проекций двух внутренних ядер в микрочастице в серии изображений, при этом частица для испытания обладает точностью различения угла вращения 90 градусов.
6. Способ по п. 1, при этом в способе одновременно определяют поворотное движение микрочастицы в поле гидроциклона вокруг геометрического центра поля циклона и вращательное движение вокруг своей собственной мгновенной оси.
7. Способ по п. 1, в котором поле гидроциклона обладает максимальной тангенциальной скоростью не более 10 м/с.
8. Способ по п. 5, при этом в способе используют только одну из высокоскоростных фотокамер для определения скорости вращения частицы, а другую используют для трехмерного позиционирования.
9. Устройство для синхронной высокоскоростной фотосъемки вращения микрочастицы в поле гидроциклона, содержащее:
экспериментальную установку (1) циклонного разделения для обеспечения поля циклона для испытания; две высокоскоростные цифровые фотокамеры (2) для синхронного измерения; источник (3) люминесцентного излучения на основе СИДа большой мощности для обеспечения яркого белого света; синхронный триггер (4) для высокоскоростных цифровых фотокамер; и компьютер (5) для управления высокоскоростными цифровыми фотокамерами и хранения данных.
10. Устройство по п. 9, в котором экспериментальная установка циклонного разделения представляет собой систему циркуляции, при этом экспериментальная установка содержит резервуар (1-1) для хранения жидкости и соединенный с резервуаром вихревой насос (1-2) для сжатия жидкости, при этом выход вихревого насоса (1-2) разделяется на два пути, по одному из которых текучая среда идет назад в резервуар (1-1) через клапан (1-3-2) обратного потока, а по другому из которых другая жидкость проходит через регулятор (1-3-1) расхода и через соединитель (1-4-3) для подачи частиц, а затем входит в микроциклон (1-5) из оптического кварцевого стекла, при этом текучая среда как из верхней, так и из нижней частей микроциклона из кварцевого стекла возвращается в резервуар (1-1), при этом манометр расположен на каждом из входа и двух выходов микроциклона из кварцевого стекла, а на входе и на верхнем выходе дополнительно расположены расходомер и регулирующий клапан.
11. Устройство по п. 9 или 10, в котором внутри соединителя (1-4-3) для подачи частиц расположена игла из нержавеющей стали, имеющая внутренний диаметр 1,5 мм, при этом игла впрыскивает микрочастицу для испытания через вход микроциклона (1-5) в поле циклона.
12. Устройство по п. 9, в котором одна (2-1) из высокоскоростных цифровых фотокамер имеет частоту кадров 10000 кадров в секунду или более, минимальную выдержку 1 микросекунда или менее и разрешение 800 × 600 или более; а другая (2-2) из высокоскоростных цифровых фотокамер имеет частоту кадров 2000 кадров в секунду или более, минимальную выдержку 1 микросекунда или менее и разрешение 800 × 600 или более.
13. Устройство по п. 9, в котором в двух высокоскоростных цифровых фотокамерах использован макросъемочный объектив.
14. Устройство по п. 9, в котором источник люминесцентного излучения на основе СИДа большой мощности имеет цветовую температуру освещения 5500-8000K и световой поток 12000 лм или более.
15. Устройство по п. 10, в котором микроциклон из оптического кварцевого стекла имеет номинальный диаметр 40 мм или менее, рабочее давление на входе 0,1-0,3 МПа и рабочую температуру 50°C или менее.
16. Устройство по п. 12, в котором высокоскоростная цифровая фотокамера (2-1) может фотографировать вращение одиночной микрочастицы.
Наверх