Патенты автора Репин Андрей Владимирович (RU)

Изобретение относится к области систем, предназначенных для непрерывного в режиме реального времени радиационного контроля состояния объекта. Сущность изобретения заключается в том, что автоматизированная система непрерывного контроля состояния объекта содержит гибкие чувствительные элементы датчика регистрации альфа-излучения, имеющие способность принимать форму необходимой зоны контроля, герметизирующие элементы с подвижным механизмом, позволяющие обеспечить минимальное или максимальное расстояние контрольного источника альфа-излучения от чувствительных элементов датчиков регистрации альфа-излучения и его подвод к ним, подвижный механизм устройства герметизации, позволяющий производить периодическую проверку работоспособности датчиков регистрации альфа-излучения и калибровку системы. Технический результат – проведение непрерывного в режиме реального времени дистанционного радиационного контроля экологической обстановки состояния объекта. 4 з.п. ф-лы, 1 ил.

Изобретение относится к устройству для контроля герметичности сосудов, содержащих высокотоксичные радиоактивные материалы. Радиометрическое устройство дистанционного контроля герметичности сосуда состоит из металлического корпуса со съемной крышкой, на которой закреплены штуцер контроля герметичности, проходные электрические герморазъемы, клапан выравнивания давления и подвижный шток с источником альфа-излучения. Корпус имеет возможность перекрытия контролируемой зоны сосуда, в которой расположены герметичные проходные устройства, и тестирующей аппаратуры, имеющей радиометрические датчики альфа-излучения. Чувствительные элементы датчиков альфа-излучения закреплены при помощи фиксаторов на наружной поверхности сосуда в контролируемой зоне около имеющихся герметичных стыковых соединений, причем датчики соединены с внешней регистрирующей аппаратурой и блоком питания через электрические герморазъемы крышки. Техническим результатом является возможность проведения дистанционного периодического контроля герметичности сосуда на предмет выхода высокотоксичных радиоактивных материалов в местах герметичных стыковых соединений проходных устройств сосуда. 4 з.п. ф-лы, 4 ил.

Изобретение относится к области обследования внутренней полости герметичных объектов большого объема, содержащих высокотоксичные экологически опасные продукты, в частности, после подрыва в полости взрывного устройства. Устройство видеонаблюдения внутреннего объема герметичного объекта содержит герметичный телескопический корпус, состоящий по крайней мере из двух цилиндрических труб, механизм перемещения, установленный внутри телескопического корпуса, выполненный в виде сильфона, имеющего на одном конце стакан с закрепленной в нем видеокамерой, соединенной с аппаратурой питания и обработки информации, а на другом - фланец с центральным отверстием и уплотнительными элементами, герметично соединенный с наружным торцом внутренней трубы телескопического корпуса, закрепленный к дну стакана шток со съемными фиксаторами и рукояткой. Внутри вышеупомянутого сильфона установлен второй сильфон, который одним концом, имеющим патрубок, герметично закреплен на стакане с помощью резьбовой втулки, другим концом сильфон герметично закреплен на переходнике с центральным отверстием. Переходник герметично соединен с фланцем наружного сильфона. На торцовой поверхности наружной трубы выполнен Г-образный выступ, входящий в кольцевую проточку втулки сцепления, расположенной на торцовой поверхности наружной трубы. Технический результат - повышение надежности конструкции, обеспечивающей безопасность проведения работ по видеообследованию герметичной полости объекта, содержащего высокотоксичные экологически опасные продукты после подрыва в нем взрывного устройства. 6 з.п. ф-лы, 3 ил.

Изобретение относится к ядерной технике, а именно к дистанционирующим устройствам, в которых размещаются изделия с установленными в них разделанными на пучки отработавшими топливными элементами (ПТ) реактора РБМК-1000 во время их транспортирования и хранения в контейнерах. Чехол предназначен для размещения и хранения отработавших тепловыделяющих сборок, обладает повышенной вместимостью. Регламентное обслуживание и ремонт при эксплуатации чехла просты. Чехол содержит нижнюю диафрагму, торцовые подпружиненные элементы для ампул, установленные на нижней диафрагме, демпфирующие элементы, установленные с наружной стороны нижней диафрагмы, центральную трубу, имеющую хвостовик для грузового захвата. На нижней диафрагме вокруг центральной трубы закреплен съемный блок каналов, включающий четыре сопряженные трубы с направляющими планками для кассет пенала, соединенные между собой вставками, а снаружи - диафрагмами, имеющими каналы, в которые установлены трубы для ампул. На нижнюю диафрагму установлены устройства поджима каждой кассеты пенала, а с наружной стороны нижней диафрагмы установлены съемные опоры. Технический результат: обеспечение оптимального ядернобезопасного расположения в чехле 150 ампул с ПТ, из которых большая часть должна находиться в кассетах пенала, вмещающих по 30 ампул с ПТ каждая. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники, в частности может быть использовано в спектроскопии диэлектриков для исследования диэлектрических характеристик веществ, знание которых необходимо при дистанционном электромагнитном зондировании, диэлектрическом каротаже, изучении молекулярного строения вещества. В способе измерения комплексной диэлектрической проницаемости жидких и сыпучих тел в широком диапазоне частот в одной ячейке, используемой в диапазоне частот выше 100 МГц как отрезок коаксиальной линии, а в диапазоне ниже 1 МГц как цилиндрический конденсатор, при этом в диапазоне частот выше 100 МГц диэлектрическая проницаемость вычисляется через измеренные значения комплексного коэффициента передачи электромагнитной волны (параметра матрицы рассеяния S12), а в диапазоне частот ниже 1 МГц - через измерение полной проводимости, новым является то, что для измерений в диапазоне частот 0,3-100 МГц используется дополнительный отрезок коаксиальной линии волновым сопротивлением 50 Ом сечения, большего, чем у ячейки, внутренний диаметр внешнего проводника которой определяют по формуле D 1 = d 1 exp ( Z 01 60 ) , где d1 - внешний диаметр корпуса ячейки; Z01 - волновое сопротивление дополнительного отрезка коаксиальной линии, в которой размещена ячейка, при этом ячейку включают как цилиндрический конденсатор в разрыв внутреннего проводника дополнительного отрезка коаксиальной линии, имеющего два СВЧ разъема, к центральным проводникам которых подключены с одной стороны центральный проводник ячейки, а с другой стороны - корпус ячейки через согласующий переходник в виде отрезка конической линии волновым сопротивлением 50 Ом, и производят его калибровку, для чего определяют параметры эквивалентной схемы дополнительного отрезка коаксиальной линии с расположенной в ней пустой ячейкой, затем заполняют ячейку исследуемым веществом и в диапазоне частот 0,3-100 МГц измеряют комплексный коэффициент передачи (параметр матрицы рассеяния S12) и по формулам, связывающим КДП с параметром S12, определяют КДП. Данный способ измерения КДП обеспечивает ее измерение в одной ячейке с низкой погрешностью во всем частотном диапазоне от 1 кГц до 6000 МГц. 9 ил.

Изобретение относится к области измерительной техники, в частности может быть использовано в спектроскопии диэлектриков для исследования диэлектрических характеристик веществ, знание которых необходимо при дистанционном электромагнитном зондировании, диэлектрическом каротаже, изучении молекулярного строения вещества

 


Наверх