Патенты автора Рагинов Сергей Владимирович (RU)

Изобретение может быть использовано в тепловизионных приборах с охлаждаемыми матричными фотоприемными устройствами. Оптическая система тепловизионного прибора состоит из первого компонента, содержащего первую положительную выпукло-вогнутую, вторую отрицательную и третью положительную вогнуто-выпуклые линзы, второго компонента, содержащего первую отрицательную вогнуто-выпуклую, вторую двояковыпуклую и третью отрицательную вогнуто-выпуклую линзы, третьего компонента, содержащего первую двояковыпуклую, вторую отрицательную вогнуто-выпуклую и третью положительную выпукло-вогнутую линзы, четвертого компонента, содержащего две положительные линзы, и фотоприемного устройства с охлаждаемой диафрагмой. Вторая и третья линзы первого компонента установлены с возможностью совместного перемещения вдоль оптической оси. Второй и четвертый компоненты установлены с возможностью поочередного ввода-вывода в оптический тракт в пространстве между первым и третьим компонентами. Технический результат - повышение вероятности обнаружения и распознавания объектов за счет обеспечения необходимой расфокусировки отраженного от оптических поверхностей холодного излучения фотоприемного устройства как в режиме калибровки, так и в рабочем режиме при сохранении компактности. 3 ил., 3 табл.

Оптическая система может использоваться в телевизионных и фотографических системах, а также в измерительных приборах с многоэлементными матричными приемниками излучения. Оптическая система состоит из первой линзовой группы, содержащей первую отрицательную выпукло-вогнутую, вторую положительную выпукло-вогнутую, третью отрицательную выпукло-вогнутую линзы, второй линзовой группы, содержащей первую отрицательную выпукло-вогнутую, вторую двояковыпуклую, третью отрицательную вогнуто-выпуклую и четвертую отрицательную вогнуто-выпуклую линзы, и приемника излучения..Выполняются соотношения: -6,3≤f'1/f'≤-5,3; 0,7≤f'II/f'≤1,3; 1,2≤d1-2/f'≤1,8; 0,4≤d6-7/f'≤0,6, где f'1 - фокусное расстояние первой линзы первой линзовой группы; f'II - фокусное расстояние второй линзовой группы; d1-2 - расстояние между первой и второй линзами первой линзовой группы, d6-7 - расстояние между третьей и четвертой линзами второй линзовой группы; f' - фокусное расстояние системы. Технический результат - повышение относительного отверстия оптической системы при уменьшении ее длины, упрощении конструкции и высоком качестве изображения в пределах всего поля зрения. 4 табл., 2 ил.

Система может быть использована в тепловизионных приборах на основе неохлаждаемых матричных фотоприемных устройств. Система состоит из первой и второй положительных выпукло-вогнутых линз, выполненных из германия, третьей отрицательной выпукло-вогнутой линзы из селенида цинка, четвертой положительной выпукло-вогнутой линзы из селенида цинка и фотоприемного устройства. Вторая линза выполнена асферической. Выполняются соотношения: 0,85<f'1/f<1,15; -0,27<f'3/f'<-0,13; 0,127<f'4/f'<0,27; 0,43<d2/f'<0,53; 0,16<d4/f'<0,22; 0,09<d6/f'<0,14; где f'1, f'3 и f'4 - фокусные расстояния первой, третьей и четвертой линз системы; f' - фокусное расстояние системы; d2, d4, d6 - расстояния между линзами. Технический результат - повышение углового разрешения за счет увеличения фокусного расстояния при уменьшении величины соотношения между длиной системы и диаметром входного зрачка. 2 ил., 5 табл.

Изобретение относится к области оптического приборостроения и касается инфракрасной системы с двумя полями зрения. Система состоит из трех расположенных вдоль оптической оси оптических компонентов и фотоприемного устройства. Первый компонент содержит первую положительную выпукло-вогнутую и вторую отрицательную асферическую линзы. Второй компонент содержит двояковогнутую асферическую линзу и установлен с возможностью перемещения вдоль оптической оси. Третий компонент содержит первую двояковыпуклую и вторую отрицательную асферическую линзы. Для фокусных расстояний f'I, f'II и f'III первого, второго и третьего компонентов соответственно и максимального фокусного расстояния системы f'max выполняются следующие соотношения: 0,5<f'I / f'max<0,7; -0,15<f'II / f'max<-0,07; 0,1<f'III / f'max<0,2. Технический результат заключается в уменьшении величины перемещения второго компонента и значения коэффициента телеукорочения. 1 ил., 4 табл..

Оптическая система тепловизионного прибора с двумя полями зрения состоит из расположенных вдоль оптической оси первого компонента, содержащего первую отрицательную и вторую положительную выпукло-вогнутые линзы и третью отрицательную вогнуто-выпуклую линзу, установленную с возможностью перемещения вдоль оптической оси, второго компонента, установленного с возможностью ввода-вывода в оптический тракт и содержащего первую отрицательную и вторую положительную вогнуто-выпуклые линзы и третью положительную выпукло-вогнутую линзу, третьего компонента, содержащего первую положительную и вторую отрицательную вогнуто-выпуклые линзы, третью выпукло-вогнутую и четвертую вогнуто-выпуклую положительные линзы, и фотоприемного устройства. Введен четвертый компонент, установленный с возможностью ввода-вывода в оптический тракт в пространстве между первым и третьим компонентами и содержащий две положительные линзы. Технический результат - повышение вероятности обнаружения и распознавания объектов за счет выравнивания неоднородности чувствительных элементов и компенсации температурной расфокусировки изображения в двух полях зрения при сохранении компактности. 3 ил., 4 табл.

Изобретение относится к инфракрасным оптическим системам и может быть использовано при создании тепловизионных приборов с охлаждаемыми матричными фотоприемными устройствами, осуществляющих обнаружение и распознавание объектов. Инфракрасная система с двумя полями зрения состоит из расположенных вдоль оптической оси первого компонента, содержащего первую положительную и вторую отрицательную выпукло-вогнутые линзы, второго компонента, содержащего двояковогнутую линзу и установленного с возможностью перемещения вдоль оптической оси, третьего компонента, содержащего двояковыпуклую линзу, четвертого компонента, содержащего первую вогнуто-выпуклую и вторую выпукло-вогнутую положительные линзы, третью отрицательную выпукло-вогнутую и двояковыпуклую линзы, и фотоприемного устройства с охлаждаемой диафрагмой. В пространстве между третьим и четвертым компонентами формируется промежуточное изображение. Для фокусных расстояний f'I и f'IV первого и четвертого компонентов соответственно и максимального фокусного расстояния системы f'max выполняются следующие соотношения: 0,6<f'I/f'max<0,72; 0,08<f'IV/f'max<0,2. За счет конструктивного выполнения инфракрасной системы с двумя полями зрения повышается концентрация энергии при минимальном фокусном расстоянии (в широком поле зрения), что обеспечивает высокое качество изображения системы и улучшает ее обнаружительную способность. 2 ил., 4 табл.

Изобретение относится к области оптического приборостроения и касается оптической системы тепловизионного прибора. Оптическая система включает в себя объектив, приемник излучения с охлаждаемой диафрагмой, блок обработки информации, датчик температуры, блок позиционирования и блок обработки информации. Объектив включает в себя два компонента. Первый компонент имеет положительную оптическую силу и состоит из выпукло-вогнутой положительной линзы и отрицательной выпукло-вогнутой линзы. Второй компонент имеет отрицательную оптическую силу и состоит из имеющей возможность перемещения под управлением блока позиционирования отрицательной выпукло-вогнутой линзы и положительной выпукло-вогнутой линзы. Расстояния между первым и вторым компонентами d1 и между линзами второго компонента d2 удовлетворяют следующим условиям: 0,2f'<d1<0,4f'; 0,1f'<d2<0,2f', где f' - фокусное расстояние системы. Технический результат заключается в повышении углового разрешения прибора, обеспечении компенсации терморасфокусировки изображения и коррекции неоднородности параметров фоточувствительных элементов приемника излучения. 3 ил., 3 табл.

Изобретение может быть использовано при создании тепловизионных приборов с охлаждаемыми матричными фотоприемными устройствами. Оптическая система состоит из последовательно расположенных вдоль оптической оси входного объектива, формирующего промежуточное изображение и содержащего первую положительную, вторую отрицательную и третью положительную выпукло-вогнутые линзы, проекционного объектива, содержащего первую двояковыпуклую, вторую отрицательную вогнуто-выпуклую и третью положительную выпукло-вогнутую линзы, и фотоприемного устройства с охлаждаемой диафрагмой. Технический результат - повышение качества изображения системы во всем поле зрения при сохранении габаритов и уменьшении массы. 2 ил., 2 табл.

Изобретение может быть использовано при создании тепловизионных приборов с охлаждаемыми матричными фотоприемными устройствами. Оптическая система тепловизионного прибора с двумя полями зрения состоит из расположенных вдоль оптической оси первого компонента, содержащего первую положительную, вторую отрицательную и третью положительную выпукло-вогнутые линзы, второго компонента, содержащего первую отрицательную вогнуто-выпуклую, вторую двояковыпуклую и третью отрицательную вогнуто-выпуклую линзы, третьего компонента, содержащего первую двояковыпуклую, вторую отрицательную вогнуто-выпуклую и третью положительную выпукло-вогнутую линзы, и фотоприемного устройства с охлаждаемой диафрагмой. Второй компонент установлен с возможностью ввода-вывода в оптический тракт. Вторая и третья линзы первого компонента установлены с возможностью совместного перемещения вдоль оптической оси. Технический результат - улучшение эксплуатационных возможностей за счет эффективной работы системы при изменении температуры в двух полях зрения при сохранении габаритов, уменьшении массы и высоком качестве изображения. 3 ил., 3 табл.

Оптическая система тепловизионного прибора состоит из расположенных вдоль оптической оси неподвижного первого компонента, содержащего первую отрицательную, вторую положительную и третью отрицательную выпукло-вогнутые линзы, подвижного второго компонента, содержащего первую отрицательную, вторую положительную и третью положительную вогнуто-выпуклые линзы, неподвижного третьего компонента, содержащего первую положительную вогнуто-выпуклую линзу, вторую отрицательную выпукло-вогнутую линзу и третью положительную двояковыпуклую линзу, и фотоприемного устройства с охлаждаемой диафрагмой. Подвижный второй компонент установлен с возможностью ввода-вывода в оптический тракт. Технический результат - увеличение фокусного расстояния при сохранении значения коэффициента телеукорочения и качества изображения. 1 ил., 3 табл.

Изобретение может быть использовано при создании тепловизионных приборов с охлаждаемыми матричными фотоприемными устройствами. Оптическая система тепловизионного прибора состоит из последовательно расположенных вдоль оптической оси входного объектива, формирующего промежуточное изображение и содержащего первую отрицательную, вторую положительную и третью отрицательную выпукло-вогнутые линзы, проекционного объектива, содержащего первую положительную вогнуто-выпуклую линзу, вторую отрицательную выпукло-вогнутую линзу и третью положительную двояковыпуклую линзу, и фотоприемного устройства с охлаждаемой диафрагмой. Технический результат - повышение разрешения тепловизионного прибора за счет увеличения фокусного расстояния, позволяющего уменьшить элементарное поле зрения, при уменьшении коэффициента телеукорочения и высоком качестве изображения. 1 ил., 3 табл.

Изобретение относится к оптико-электронному приборостроению и может быть использовано в тепловизионных приборах с многоэлементными фотоприемниками и многоэлементными излучателями. Техническим результатом является снижение потребляемой мощности резистором токоограничивающего элемента и габаритов конденсатора при использовании устройства в компактных (ручных) тепловизионных приборах с питанием от миниатюрных электрических батарей. Результат достигается тем, что в устройстве формирования изображения, содержащем входной объектив, блок сканирования, многоэлементный фотоприемник, подключенный к входам блока видеообработки, выходы которого подключены к входам многоэлементного излучателя, выходной объектив, а также токоограничивающий элемент, содержащий последовательно соединенные резистор, вторым выводом подключенный к первой шине питания, и конденсатор, вторым выводом подключенный к второй шине питания, дополнительно введен транзистор, база которого подключена к точке соединения резистора и конденсатора, коллектор соединен с первой шиной питания, а эмиттер соединен с выходами многоэлементного излучателя. 1 ил.

Изобретение может быть использовано в тепловизионных приборах с охлаждаемыми матричными фотоприемными устройствами. Оптическая система состоит из расположенных вдоль оптической оси трех компонентов. Первый неподвижный компонент содержит первую отрицательную и вторую положительную выпукло-вогнутые линзы и отрицательную вогнуто-выпуклую третью линзу. Второй подвижный компонент установлен с возможностью ввода-вывода в оптический тракт и содержит первую и вторую отрицательные вогнуто-выпуклые линзы и дополнительно введенную третью двояковыпуклую линзу. Неподвижный третий компонент содержит первую положительную и вторую отрицательную вогнуто-выпуклые линзы и введенную третью положительную выпукло-вогнутую линзу и четвертую положительную вогнуто-выпуклую линзу. Подвижный второй компонент установлен в пространстве между неподвижными первым и третьим компонентами. Технический результат - повышение кратности изменения поля зрения и уменьшение значения коэффициента телеукорочения при сохранении качества изображения. 1 ил., 3 табл.

Изобретение может быть использовано в тепловизионных приборах с охлаждаемыми матричными приемниками излучения. Устройство состоит из объектива, матричного приемника излучения с охлаждаемой диафрагмой, блока обработки информации, блока позиционирования, блока стабилизации и блока калибровки. Объектив содержит последовательно расположенные вдоль оптической оси первую, вторую группы линз, плоское зеркало, стабилизирующую линзу и третью группу линз. Между плоским зеркалом и стабилизирующей линзой формируется промежуточное изображение. В блоке обработки информации под управлением блока калибровки осуществляется коррекция неоднородности параметров фоточувствительных элементов матричного приемника и вывод скорректированного изображения на экран монитора. Блок позиционирования осуществляет перемещение первой линзы второй группы вдоль оптической оси для переключения полей зрения устройства. Блок стабилизации осуществляет перемещение стабилизирующей линзы перпендикулярно оптической оси для стабилизации оси визирования и калибровки устройства без потери изображения объекта. Технический результат - повышение надежности и точности обнаружения цели и определения ее координат. 2 ил., 3 табл.

Изобретение относится к тепловизионным приборам, которые обеспечивают наблюдение как в видимой, так и в инфракрасной области. В указанном приборе инфракрасный объектив формирует тепловое изображение в плоскости чувствительных элементов матричного фотоприемника, выходные сигналы с которого поступают в блок обработки информации, управляющий яркостью каждого элемента устройства отображения информации, расположенного в фокальной плоскости окуляра, в соответствии с формируемым тепловым изображением. Коллимированный пучок лучей, сформированный окуляром, отражается зеркалом и спектроделителем и попадает в глаз наблюдателя одновременно с видимым изображением наблюдаемой сцены. Блок управления фокусировкой служит для компенсации расфокусировки изображения инфракрасного объектива в результате изменения температуры окружающей среды. Технический результат заключается в повышении углового разрешения тепловизионного прибора и расширении эксплуатационных возможностей. 1 ил.

Изобретение относится к области навигационного приборостроения и может найти применение в системах астроориентации и астронавигации космических аппаратов и авиационной техники. Технический результат - повышение точности. Для этого прибор содержит входную оптическую систему с объективом, в фокальной плоскости которого установлен приемник излучения, размещенные на внутренней рамке подвеса, а также внешнюю рамку подвеса и блок обработки информации, первый вход которого подключен к выходу, а первый управляющий выход - к управляющему входу приемника излучения, при этом внутренняя и внешняя рамки подвеса снабжены приводами, входы которых подключены соответственно ко второму и третьему управляющим выходам блока обработки информации, и измерителями угла поворота. Повышение точности угловых измерений достигается за счет увеличения скорости обработки информации при использовании высокоточных высокоинформативных устройств. 2 з.п. ф-лы, 2 ил.

Инфракрасный объектив может быть использован в тепловизорах. Объектив содержит три компонента. Первый неподвижный компонент содержит первую положительную выпукло-вогнутую линзу и вторую двояковыпуклую линзу, вторая поверхность которой выполнена асферической. Второй компонент содержит отрицательную линзу, первая поверхность которой выполнена асферической, и установлен с возможностью перемещения вдоль оптической оси. Третий неподвижный компонент содержит первую двояковыпуклую и вторую положительные линзы. Второй подвижный компонент расположен между первой и второй линзами неподвижного первого компонента. Технический результат - повышение энергетических характеристик и углового разрешения объектива за счет увеличения диаметра входного зрачка и фокусного расстояния. 4 з.п. ф-лы, 1 ил., 3 табл.

Использование: относится к оптико-электронному приборостроению и может быть использовано в тепловизионных устройствах с матричными фотоприемными устройсвами. Цель: повышение разрешающей способности оптической системы тепловизионного прибора при сохранении ее компактности. Сущность изобретения: оптическая система тепловизионного прибора содержит последовательно расположенные по ходу лучей входной объектив, строящий действительное промежуточное изображение и содержащий отрицательный и положительный мениски, и проекционный объектив, установленный перед фотоприемным устройством и содержащий последовательно установленные по ходу лучей первый мениск, второй отрицательный мениск, обращенный выпуклостью к фотоприемному устройству, третий положительный мениск, обращенный выпуклостью к пространству предметов, и четвертый положительный мениск, обращенный выпуклостью к фотоприемному устройству. Во входном объективе первым по ходу лучей расположен отрицательный мениск, а за положительным мениском введен дополнительный отрицательный мениск, обращенный выпуклостью к плоскости действительного промежуточного изображения, в проекционном объективе первый мениск выполнен положительным и выпуклой стороной направлен к фотоприемному устройству, а четвертый мениск расположен между третьим мениском проекционного объектива и фотоприемным устройством. 1табл., 1 ил.

Изобретение относится к технике спектрального анализа и может найти применение при эмиссионных и атомно-абсорбционных измерениях в спектроанализаторах с дифракционными решетками и многоэлементными фотоприемниками

 


Наверх