Оптическая система тепловизионного прибора

Изобретение относится к области оптического приборостроения и касается оптической системы тепловизионного прибора. Оптическая система включает в себя объектив, приемник излучения с охлаждаемой диафрагмой, блок обработки информации, датчик температуры, блок позиционирования и блок обработки информации. Объектив включает в себя два компонента. Первый компонент имеет положительную оптическую силу и состоит из выпукло-вогнутой положительной линзы и отрицательной выпукло-вогнутой линзы. Второй компонент имеет отрицательную оптическую силу и состоит из имеющей возможность перемещения под управлением блока позиционирования отрицательной выпукло-вогнутой линзы и положительной выпукло-вогнутой линзы. Расстояния между первым и вторым компонентами d1 и между линзами второго компонента d2 удовлетворяют следующим условиям: 0,2f'<d1<0,4f'; 0,1f'<d2<0,2f', где f' - фокусное расстояние системы. Технический результат заключается в повышении углового разрешения прибора, обеспечении компенсации терморасфокусировки изображения и коррекции неоднородности параметров фоточувствительных элементов приемника излучения. 3 ил., 3 табл.

 

Изобретение относится к инфракрасным оптическим системам и может быть использовано при создании тепловизионных приборов с охлаждаемыми матричными приемниками излучения.

Известна оптическая система для тепловизионных приборов (см. патент RU 2449328 А1, МПК7 G02B 13/14, 23/12, публ. 27.04.2012 г.), содержащая входной и проекционный объективы, между которыми формируется промежуточное изображение, и матричный приемник излучения с охлаждаемой диафрагмой. Система имеет следующие характеристики: спектральный диапазон работы 3…5 мкм, фокусное расстояние 60 мм, длина от первой линзы до плоскости изображения 150 мм. Система содержит расфокусирующий элемент, установленный с возможностью ввода-вывода его в оптический тракт. С помощью этого элемента осуществляется необходимая при работе инфракрасных систем коррекция неоднородности параметров фоточувствительных элементов приемника излучения (калибровка).

Недостатками являются небольшое фокусное расстояние и большая длина оптической системы.

Также известно оптическое устройство формирования изображения с ИК-калибровкой (см. патент FR 2928462 А1, МПК7 G02B 13/14, 15/16, H04N 5/235 публ. 11.09.2009 г.), содержащее входной объектив, проекционный объектив, приемник излучения с охлаждаемой диафрагмой, блок обработки информации, блок позиционирования и блок калибровки. Фокусное расстояние системы изменяемое, причем максимальное фокусное расстояние f'max=135 мм, минимальное - f'min=25 мм. Устройство работает в спектральном диапазоне 3…5 мкм, формат матрицы приемника излучения 384×288 элементов с шагом 15 мкм. Длина оптической системы устройства от первой линзы до плоскости изображения не менее 170 мм. В описанном устройстве предусмотрена калибровка, которая осуществляется перемещением двух линз, устанавливаемых в положении, обеспечивающем полную расфокусировку изображения от бесконечно удаленного объекта.

Недостатками описанного устройства являются большая длина оптической системы, небольшое линейное поле зрения, а также осуществление калибровки в результате перемещения двух оптических элементов.

Наиболее близкой по технической сущности к заявляемой системе, выбранной в качестве прототипа, является оптическая система для инфракрасной камеры (см. патент US 5909307 А, МПК7 G02B 13/14, публ. 01.06.1999 г.), содержащая объектив и приемник излучения с охлаждаемой диафрагмой. Объектив работает в спектральном диапазоне 3…5 мкм и состоит из двух компонентов, при этом первый компонент выполнен в виде отрицательной выпукло-вогнутой линзы, второй компонент в целом положительный и содержит первую положительную выпукло-вогнутую, вторую отрицательную выпукло-вогнутую и третью двояковыпуклую линзы; вблизи первой линзы второго компонента расположена апертурная диафрагма. Фокусное расстояние объектива f'=22,1 мм, длина L от первой поверхности первого компонента до плоскости изображения 80 мм. Для оптической силы объектива ϕ, оптических сил первого ϕ1 и второго ϕ2 компонентов, расстояния между ними d и длины второго компонента d2 выполнены соотношения:

1) 0,5ϕ<-ϕ1<0,7ϕ;

2) 0,55ϕ<ϕ2<0,87ϕ;

3) 1,55/ϕ<d<1,98/ϕ;

4) d2<2,1/ϕ.

К недостаткам описанной системы можно отнести следующее. При работе со стандартным приемником излучения, имеющим формат матрицы 640×512 с шагом элементов 15 мкм, элементарное поле зрения этой оптической системы составляет γ=15/f'=0,68 мрад, что не обеспечивает достаточного углового разрешения тепловизионного прибора. В описанной системе компенсация терморасфокусировки изображения осуществляется, предположительно, перемещением всего объектива, поскольку он имеет небольшие габаритные размеры, и при возрастании диаметров линз и длины (в случае увеличения фокусного расстояния системы) становится неприемлемой. Кроме того, в этой системе отсутствует возможность коррекции неоднородности параметров фоточувствительных элементов приемника излучения.

Задачей, на решение которой направлено изобретение, является повышение углового разрешения тепловизионного прибора при обеспечении компенсации терморасфокусировки изображения и коррекции неоднородности параметров фоточувствительных элементов приемника излучения перемещением одного из элементов системы.

Поставленная задача решается за счет того, что в оптической системе тепловизионного прибора, состоящей из объектива, содержащего последовательно расположенные вдоль оптической оси первый компонент, первая линза которого выполнена выпукло-вогнутой, и второй компонент, выполненный в виде двух выпукло-вогнутых линз, и приемника излучения с охлаждаемой диафрагмой, выход которого соединен с входом блока обработки информации, введены датчик температуры и блок позиционирования, подключенные к входу и выходу блока обработки информации соответственно, в первом компоненте объектива первая линза выполнена положительной и дополнительно введена отрицательная выпукло-вогнутая линза, при этом оптическая сила первого компонента в целом положительная, во втором компоненте первая линза выполнена отрицательной и установлена с возможностью перемещения вдоль оптической оси под управлением блока позиционирования, вторая линза выполнена положительной, при этом оптическая сила второго компонента в целом отрицательная, а расстояния между первым и вторым компонентами d1 и между линзами второго компонента d2 удовлетворяют следующим условиям:

0,2f'<d1<0,4f'; 0,1f'<d2<0,2f', где f' - фокусное расстояние системы.

На фиг. 1 представлена оптическая схема тепловизионного прибора.

На фиг. 2 представлен ход лучей в системе с расположением элементов, соответствующим рабочему режиму (а) и режиму калибровки (б).

На фиг. 3 представлены графики функции концентрации энергии (ФКЭ) системы для температур 20, 60 и минус 50°С.

Оптическая система тепловизионного прибора состоит из объектива, содержащего последовательно расположенные вдоль оптической оси первый компонент I, включающий первую положительную 1 и вторую отрицательную 2 выпукло-вогнутые линзы, и второй компонент II, включающий подвижную первую отрицательную 3 и вторую положительную 4 выпукло-вогнутые линзы, при этом расстояния между первым и вторым компонентами d1 и между линзами второго компонента d2 удовлетворяют следующим условиям: 0,2f'<d1<0,4f'; 0,1f'<d2<0,2f' (f' - фокусное расстояние системы), приемника излучения 5 с охлаждаемой диафрагмой 6, выход которого соединен с входом блока обработки информации 7, датчика температуры 8, подключенного к входу блока обработки информации 7, и блока позиционирования 9, управляющего первой линзой 3 второго компонента II и подключенного к выходу блока обработки информации 7. Дополнительно показано устройство отображения информации (монитор) 10.

Блок обработки информации 7 может быть выполнен на основе микропроцессоров типа цифрового сигнального процессора TMS320 DM642 или подобного и микросхем памяти, обеспечивающих осуществление связей с блоком позиционирования 9 и датчиком температуры 8, электронную обработку сигнала и вывод его на экран монитора 10. Блок позиционирования 9 может быть выполнен в виде шагового двигателя, осуществляющего перемещение линзы 3 вдоль оптической оси.

В таблице 1 приведены технические характеристики системы.

Конструктивные параметры конкретного примера исполнения объектива приведены в таблице 2.

В таблице 3 приведены значения перемещений линзы 3 в зависимости от температуры окружающей среды.

Как следует из таблицы 1, элементарное поле зрения этой оптической системы составляет γ=15/f'=0,13 мрад, что в 5 раз меньше, чем в прототипе, при этом ее длина увеличена незначительно. Конструктивное исполнение, при котором линза 3 установлена с возможностью перемещения вдоль оптической оси, позволяет осуществлять компенсацию расфокусировки изображения при изменении температуры (см. фиг. 3) и частичную расфокусировку изображения для выполнения коррекции неоднородности чувствительных элементов приемника излучения (см. фиг. 2б).

Оптическая система тепловизионного прибора работает следующим образом. Инфракрасное излучение от бесконечно удаленного объекта попадает в объектив, где проходит через линзы 1-4 первого I и второго II компонентов и фокусируется в плоскости чувствительных элементов приемника излучения 5, выходные сигналы с которого поступают в блок обработки информации 7, причем выходной зрачок системы совмещен с охлаждаемой диафрагмой 6.

В рабочем режиме показания датчика температуры поступают в блок обработки информации 7, сигнал с которого поступает в блок позиционирования 9. В соответствии с этим сигналом осуществляется перемещение линзы 3 вдоль оптической оси в заданное положение (см. таблицу 2) и устраняется расфокусировка изображения при изменении температуры.

В режиме калибровки сигнал от блока обработки информации 7 поступает в блок позиционирования 9, и линза 3 перемещается вдоль оптической оси в положение, при котором осуществляется частичная расфокусировка системы. Затем выходные сигналы с приемника излучения 5 поступают в блок обработки информации 7, где вычисляются корректирующие поправки для каждого элемента приемника излучения 5, которые учитываются при формировании изображения в рабочем режиме, после чего скорректированное изображение выводится на экран монитора 10.

Таким образом, выполнение оптической системы тепловизионного прибора в соответствии с предлагаемым техническим решением позволяет повысить его угловое разрешение при обеспечении компенсации терморасфокусировки изображения и коррекции неоднородности параметров фоточувствительных элементов приемника излучения перемещением одного из элементов системы, что улучшает эксплуатационные характеристики прибора в целом.

Оптическая система тепловизионного прибора, состоящая из объектива, содержащего последовательно расположенные вдоль оптической оси первый компонент, первая линза которого выполнена выпукло-вогнутой, и второй компонент, выполненный в виде двух выпукло-вогнутых линз, и приемника излучения с охлаждаемой диафрагмой, выход которого соединен с входом блока обработки информации, отличающаяся тем, что введены датчик температуры и блок позиционирования, подключенные к входу и выходу блока обработки информации соответственно, в первом компоненте объектива первая линза выполнена положительной и дополнительно введена отрицательная выпукло-вогнутая линза, при этом оптическая сила первого компонента в целом положительная, во втором компоненте первая линза выполнена отрицательной и установлена с возможностью перемещения вдоль оптической оси под управлением блока позиционирования, вторая линза выполнена положительной, при этом оптическая сила второго компонента в целом отрицательная, а расстояния между первым и вторым компонентами d1 и между линзами второго компонента d2 удовлетворяют следующим условиям:

0,2f'<d1<0,4f'; 0,1f'<d2<0,2f', где f' - фокусное расстояние системы.



 

Похожие патенты:

Изобретение относится к устройствам регистрации видеоизображений. Техническим результатом является повышение кадровой частоты фотоприемной матрицы и увеличение динамического диапазона датчика изображений для обнаружения малоконтрастных объектов.

Изобретение относится к панорамному телевизионному наблюдению цветного изображения, которое выполняется при помощи трех датчиков видеосигнала основных цветов (R, G, В) в области, близкой к полусфере, т.е.

Изобретение относится к панорамному телевизионному наблюдению, которое выполняется компьютерной системой при помощи телевизионной камеры кругового обзора в области, близкой к полусфере, т.е.

Изобретение относится к панорамному телевизионному наблюдению «день - ночь», которое выполняется в вечернее и/или в ночное время суток телевизионной камерой кругового обзора в области, близкой к полусфере, т.е.

Изобретение относится к электронному приборостроению и предназначено для контроля и управления тепловизионными каналами (ТВК). Техническим результатом является расширение функциональных возможностей устройства за счет обеспечения проверки работоспособности ТВК, не имеющих органов ручного управления, и автоматизации измерения основных качественных характеристик ТВК, при повышении точности результатов измерений.

Изобретение относится к твердотельному датчику изображения и системе восприятия изображения. Датчик содержит блок восприятия изображения, включающий в себя блоки пикселов, и блок считывания для считывания сигнала из блока восприятия изображения.

Двухканальный тепловизионно-ночной наблюдательный прибор содержит тепловизионный канал, состоящий из объектива тепловизионного канала, матричного приемника излучения, плоского дисплея, лупы тепловизионного канала, куб-призмы.
Активно-импульсный ПНВ содержит в качестве источника подсветки объекта импульсный излучатель, а в качестве приемника изображения ЭОП с импульсной модуляцией коэффициента усиления.

Изобретение относится к приборам ночного видения. Устройство содержит блок наблюдения, телевизионный канал, блок управления и синхронизации, импульсный инфракрасный осветитель и блок деления частоты, блок преобразования задержки, два электромеханических привода, блок регулировки амплитуды тока накачки и последовательно соединенные измеритель естественной освещенности, блок преобразования сигнала и блок управления частотой.

Твердотельное устройство формирования изображения содержит первую полупроводниковую область первого типа проводимости, обеспеченную на подложке методом эпитаксиального выращивания, вторую полупроводниковую область первого типа проводимости, обеспеченную на первой полупроводниковой области, и третью полупроводниковую область второго типа проводимости, обеспеченную во второй полупроводниковой области так, чтобы образовать p-n-переход со второй полупроводниковой областью, причем первая полупроводниковая область сформирована так, что концентрация примеси уменьшается от стороны подложки к стороне третьей полупроводниковой области, и распределение концентрации примеси во второй полупроводниковой области формируется методом ионной имплантации.

Изобретение относится к оптическому приборостроению, в частности к объективам с переменным фокусным расстоянием, предназначенным для использования как в визуальных приборах, так и в приборах, работающих с телевизионными приемниками.

Изобретение относится к оптическому приборостроению и м.б. .

Изобретение относится к области оптического приборостроения и может быть использовано в аппаратуре для копирования микрофильмов ив установках для вывода информации из ЭВМ.

Двухспектральная оптическая система содержит главное вогнутое асферическое зеркало с центральным отверстием, вторичное выпуклое асферическое зеркало, спектроделитель, тепловизионный канал с первым, вторым и третьим объективами, а также фотоприемным устройством и устройством переключения потоков излучения, два телевизионных канала с объективом и фотоприемным устройством в каждом из каналов и устройство управления и обработки информации.

Компактный объектив среднего ИК диапазона предназначен для использования с охлаждаемыми фотоприемными устройствами среднего ИК диапазона. Объектив состоит из входной и проекционной частей.

Объектив содержит 3 мениска. Первый и третий мениски - положительные, выполнены из германия.

Объектив может быть использован в тепловизорах с матричными фотоприемными устройствами, не требующими охлаждения до криогенных температур и чувствительными в спектральном диапазоне 8-12 мкм.

Оптическая система формирования изображений содержит детектор формирования изображений, включающий первую область, чувствительную к свету в первом диапазоне волн приблизительно от 1,0 до 2,5 мкм, и вторую область, чувствительную к свету во втором диапазоне волн, который включает по меньшей мере одну из короктоволновой инфракрасной полосы спектра и средневолновой инфракрасной полосы спектра, несколько линз для фокусирования света на детектор формирования изображений, изготовленных из материала, прозрачного в диапазоне длин волн по меньшей мере от 1,0 мкм до 5,0 мкм; и светоделитель, расположенный между линзами и детектором формирования изображений и предназначенный для деления падающего света на первый и второй диапазоны волн и направления их на соответственно на первую и вторую области детектора формирования изображений.

Изобретение может быть использовано при создании тепловизионных приборов с охлаждаемыми матричными фотоприемными устройствами. Оптическая система состоит из последовательно расположенных вдоль оптической оси входного объектива, формирующего промежуточное изображение и содержащего первую положительную, вторую отрицательную и третью положительную выпукло-вогнутые линзы, проекционного объектива, содержащего первую двояковыпуклую, вторую отрицательную вогнуто-выпуклую и третью положительную выпукло-вогнутую линзы, и фотоприемного устройства с охлаждаемой диафрагмой.
Наверх