Патенты автора Анисимова Светлана Анатольевна (RU)

Изобретение относится к производству емкостей для термообработки сыпучих материалов, например, для кристаллизации аморфного стекла литийалюмосиликатного состава. Предложен способ изготовления емкостей для термообработки сыпучих материалов, включающий измельчение закристаллизованного стекла, либо забракованных после термообработки изделий, либо отливок произвольной формы, получаемых из шликеров, оставшихся в подпиточных емкостях формовых комплектов после окончания набора стеклокерамических изделий мокрым способом до получения водного шликера с плотностью 2,10-2,20 г/см3, тониной помола с остатком на сите 0,063 мм 7,1-12,5 %, формование заготовок в гипсовых формах, их сушку и термообработку, термообработку отформованных заготовок осуществляют при 800-1100 °С в течение 0,5-2 часов. Техническим результатом изобретения является снижение трудоемкости при изготовлении емкостей для термообработки сыпучих материалов. 1 табл.
Изобретение относится к производству крупногабаритных керамических изделий радиотехнического назначения. Технический результат - повышение производительности при кристаллизации исходного литийалюмосиликатного стекла и повышение качества материала. Способ изготовления изделий из стеклокерамики литийалюмосиликатного состава включает измельчение предварительно закристаллизованного литийалюмосиликатного стекла мокрым способом до получения шликера с заданными параметрами, предварительное формование в гипсовых формах заготовок произвольной формы, их повторную переработку в шликер, формование изделий и термообработку. Предварительную кристаллизацию литийалюмосиликатного стекла проводят в емкости из стеклокерамики литийалюмосиликатного состава при скорости подъема температуры 200-300°С/час сначала при температуре зародышеобразования 630-670°С, а затем при температуре кристаллизации 1170-1250°С в течение 6-12 ч, при этом слой стекла в емкости не превышает 200 мм. 5 пр.

Изобретение относится к области измерения электрических полей и может быть использовано для измерения напряженности постоянных электрических полей, создаваемых как объектами промышленного и лабораторного назначения, так и объектами, находящимися в атмосфере. Техническим результатом является повышение точности измерения напряженности электростатического поля при наличии электромагнитных помех. В предлагаемом способе измерения напряженности электростатического поля осуществляют проведение спектрального анализа сигнала, получаемого от датчика, например антенны, помещенной в электростатическое поле. При этом дополнительно проводят спектральный анализ фонового электромагнитного поля, полученного от антенны, помещенной вне электростатического поля. После чего сравнивают спектральные характеристики от первой и второй антенны и по их различию судят о величине напряженности электростатического поля. 2 ил.

Изобретение относится к энергетике. Способ интенсификации процесса горения топлива заключается в том, что топливо, подаваемое в зону горения, и зону горения облучают электромагнитным полем, предварительно определяют резонансную частоту топлива путем проведения спектрального анализа фонового поля, пересекающего топливо, и облучение ведут на этой частоте. Технический результат - увеличение эффективности сгорания топлива при низких напряженностях электромагнитного поля. 1 ил.

Изобретение относится к медицине, в частности к экспериментальной онкологии и маммологии, и может быть использовано в качестве модели фиброзно-кистозной болезни молочной железы. Способ включает внутримышечное введение девственным самкам крыс синэстрола в дозе 0,5 мл 2% масляного раствора в комбинации с 0,5 мл 2,5% масляного раствора прогестерона. Введение осуществляют в 1, 7, 14, 21, 28 и 35 дни эксперимента. Способ обеспечивает получение морфологических изменений молочной железы, подобных таковым изменениям у женщин, что позволяет детально изучать патогенез заболевания и способствовать разработке путей первичной профилактики рака молочной железы. 4 ил.

Изобретение относится к области неразрушающего контроля и диагностики материалов и может быть использовано в тех областях науки и техники, где необходимо отслеживать состояние материалов без оказания тестового воздействия на них

 


Наверх