Патенты автора Бендерский Геннадий Петрович (RU)

Изобретение относится к теплотехнике, а именно к системам регулирования теплового режима различных установок. Устройство поддержания температурного режима потребителя содержит первый и второй контуры циркуляции охлаждающей жидкости и контур холодильной машины. Первый контур циркуляции включает насос (1), жидкостно-воздушный теплообменник (4) с одним вентилятором (7), датчики температуры (9, 10), запорные элементы (5, 6). Второй контур циркуляции включает насос (11). Контур холодильной машины включает компрессор (8), конденсатор (12), дроссель (13) и испаритель (2). Испаритель (2) является общим элементом для контура холодильной машины и первого контура, конденсатор (12) - для контура холодильной машины и второго контура, а теплообменник (4) - для первого и второго контуров. Насос (1) первого контура соединен с потребителем (3) через испаритель (2) и нагреватель (14), установленные таким образом, что выход испарителя (2) соединен со входом нагревателя (14), а выход нагревателя (14) соединен со входом потребителя (3). Также раскрыт способ работы устройства поддержания температурного режима. Технический результат заключается в улучшении поддержания рабочей температуры потребителя тепла в заданных пределах. 2 н. и 6 з.п. ф-лы, 1 ил.

Изобретение относится к области радиолокации, конкретно к радиолокационным станциям (РЛС) обнаружения малоразмерных целей, и может быть использовано для контроля воздушного пространства. Техническим результатом является увеличение надежности контроля воздушного пространства за счет расширения функциональных возможностей РЛС по обнаружению целей. Заявленная РЛС 1 содержит зеркальную приемопередающую антенну 1.1 кругового обзора с cosec2 лучом в угломестной плоскости и узким лучом в азимутальной плоскости. Антенна 1.1 соединена по сигналам зондирования через антенный переключатель 1.2 и передатчик 1.5 с формирователем 1.6 последовательности зондирующих сигналов (ЗС) наносекундной и микросекундной длительности. По ответным сигналам она соединена через антенный переключатель 1.2, четырехканальный приемник 1.3 сигналов горизонтальной и вертикальной поляризации, устройство 1.4 поляризационной обработки сигналов, цифровой коррелятор 1.7, автоматизированное рабочее место 1.8 с радиомодемом 1.9 связи РЛС 1 с командным пунктом 2 контроля воздушного пространства. При этом ЗС наносекундной и микросекундной длительности формирователя 1.6 выполнены соответственно немодулированными и с внутриимпульсной модуляцией, с паузой между ними доли мкс и разнесением их по частоте на 1-10 МГц. РЛС позволяет обнаруживать радиопрозрачные и радионепрозрачные, движущиеся и зависшие воздушные цели. 1 ил.

Система наблюдения и противодействия беспилотным летательным аппаратам (БПЛА) содержит наземный центр контроля (НЦК) воздушного пространства, средства обнаружения (СО) БПЛА, средства нейтрализации (СН) БПЛА. НЦК содержит управляющую ЭВМ, автоматизированное рабочее место (АРМ), аппаратуру цифровой связи, выносной пункт управления. СО БПЛА содержат радиолокационную станцию, оптико-электронную систему обнаружения и сопровождения БПЛА, систему радиотехнической разведки (РТР). СН БПЛА содержат БПЛА-перехватчик, глушитель каналов связи, пусковую установку ракет, зенитное орудие, лазерную установку, радиолучевое устройство. Обеспечивается повышение надежности отражения массового налета гиперскоростных, планирующих, и малоскоростных мини- и микроБПЛА. 12 з.п. ф-лы, 10 ил.

Изобретение относится к устройствам создания реактивной тяги, конкретно к электрическим реактивным движителям (ЭРД). ЭРД содержит последовательно и соосно установленные по течению воздушного потока дельтовидные крылья 1, воздухозаборник 2, направляющие лопатки 3, многолопастную крыльчатку 4 с приводом от вентильного электродвигателя 5, а также реактивное сопло 6. Внутри сопла 6 условлено центральное тело 7, закрепленное внутри сопла 6 спрямляющими лопатками 8. На внешней поверхности центрального тела 7 в воздушно-реактивной струе ЭРД установлены рули 9, а внутри тела 7 - рулевые машинки 10, кинематически соединенные с рулями 9. Такое конструктивное исполнение ЭРД позволяет управлять угловым направлением его вектора тяги, компенсировать положение струйных рулей остаточной закрутки реактивной струи ЭРД, препятствуя его угловому вращению и образованию крена. В целом указанные технические преимущества позволяют повысить надежность управления ЭРД и обеспечить достижение заявленного технического результата и решение поставленной задачи. 4 ил.

Изобретение относится к активным головкам самонаведения и может быть использовано в качестве бортового элемента летательных аппаратов как средство наведения на воздушные цели. Активная головка самонаведения содержит корпус 1, на внешней поверхности которого установлены флюгарки 4 с датчиками 8 их углового положения. Внутри корпуса 1 установлены блок 10 источников излучения 10.1 и оптическая система 2 линз с полосовым оптическим фильтром 3. Фильтр 3 установлен после оптической системы 2 линз перед фотоприемным устройством. Фотоприемное устройство выполнено в виде решетки 9 фотоприемников 9.1, установленных перед передней фокальной плоскостью оптической системы 2. Источники 10.1 выполнены расколлимированными, то есть имеют расширенную диаграмму направленности. Выходы фотоприёмников 9.1 соединены с платой 11 аналоговой обработки сигналов. Плата 11 содержит последовательно соединенные блок операционных усилителей 11.1 и блок пиковых детекторов 11.2. Выходы пиковых детекторов 11.2 соединены с платой 12 цифровой обработки сигналов. Плата 12 цифровой обработки сигналов содержит многоканальный аналогово-цифровой преобразователь 12.1, компаратор 12.2 и электронно-вычислительную машину (ЭВМ) 12.3. Вторые сигнальные входы ЭВМ 12.3 соединены с сенсорными датчиками 8 углового положения флюгарок 4, а управляющий выход ЭВМ 12.3 соединен через генератор 13 сильноточных импульсов с входами блока 10 источников излучения 10.1. Блок 10 импульсных источников содержит не менее одного импульсного источника 10.1 подсветки цели, а решетка 9 - не менее трех фотоприемников 9.1. ЭВМ 12.3 обработки сигналов выполнена на основе ARM (Advanced RISC Machine) архитектуры с математическим сопроцессором на общем кристалле. Сигнальный выход ЭВМ 12.3 соединен с выходной шиной головки самонаведения. Технический результат – повышение надежности работы головки самонаведения. 2 з.п. ф-лы, 8 ил.

Изобретение относится к ракетам, использующим для создания воздушной реактивной тяги и полета электрическую энергию бортового источника электроэнергии. Технический результат - повышение маневренности ракеты, точности наведения на цель и надежности работы. Электроракета – ЭР содержит пустотелый корпус, с головной стороны которого установлена головка самонаведения. В хвостовой части установлен электрический реактивный движитель – ЭРД. Он содержит многолопастную крыльчатку. Внутри корпуса ЭР установлены управляющий вычислительный модуль, регулятор хода и вентильный электродвигатель. На валу упомянутого электродвигателя закреплена многолопастная крыльчатка. При этом ЭР выполнена с возможностью измерения углового рассогласования ее оси с заданным направлением траектории ее движения в процессе полета с помощью блока флюгарок, установленных на головной части корпуса ЭР. Цифровые датчики ее углов по цифровому интерфейсу соединены с головкой самонаведения и управляющим вычислительным модулем. Этот модуль выполнен с возможностью отработки измеренных рассогласований, выдачу корректирующего сигнала на рули управления, сведения к нулю величины рассогласования и поддержания оси ЭР с направлением траектории ее движения. Рули управления ЭР установлены в реактивном воздушном потоке, создаваемом крыльчаткой ЭРД, и связаны через рулевые приводы с управляющим вычислительным модулем электроракеты. 10 з.п. ф-лы, 6 ил.

Изобретение относится к средствам противоздушной обороны и конкретно к способу перехвата летательных аппаратов - ЛА самонаводящейся электроракетой - ЭР. Технический результат - повышение вероятности поражения ЛА за счет возможности повторной атаки ЭР. По способу осуществляют развертывание пусковых установок ЭР на территории обороняемого объекта. Рассчитывают множество допустимых траекторий полетов ЭР для перехвата опасных ЛА с требуемой вероятностью их поражения. Активируют аккумуляторные батареи ЭР, выбранных для перехвата ЛА. Вводят в память бортовой электронно-вычислительной машины - ЭВМ ЭР массив данных о траектории полета ЭР, старт ЭР и вывод их в зону видимости ЛА головкой самонаведения - ГСН ЭР. Включают режим самонаведения ЭР и обеспечивают безогневое поражение ЛА. При этом траекторию полета ЭР в зону повторной видимости ГСН рассчитывают на борту ЭР. Предусматривают разворот ЭР путем снижения ее путевой скорости и перекладки струйных рулей в угловое положение, соответствующее максимальному аэродинамическому качеству струйного руля. Угловое рассогласование оси ЭР с заданным направлением траектории ее движения измеряют блоком флюгарок. Отработку измеренного рассогласования, выдачу корректирующего сигнала на рули управления, сведение к нулю величины рассогласования и поддержание оси ЭР с направлением траектории ее движения производят с помощью управляющего вычислительного модуля ЭР. 6 з.п. ф-лы, 12 ил.

Изобретение относится к локационным системам, использующим электромагнитные волны иные, чем радиоволны, конкретно к оптоэлектронным измерителям координат воздушных целей, и может быть использовано в бортовых и наземных локационных системах. Оптоэлектронный измеритель координат воздушных целей содержит корпус 1. Внутри корпуса 1 под светопрозрачным обтекателем 2 установлен приемоизлучающий объектив 3. Объектив 3 содержит блок 4 импульсных источников 4.1 подсветки цели и приемную оптическую систему 5. Система 5 включает последовательно установленные собирающую линзу 5.1, узкополосный оптический фильтр 5.2, и решетку 6 фотоприемников 6.1. Фотоприемники 6.1 расположены перед фокальной плоскостью 5.3 собирающей линзы 5.1. Выходы фотоприемников 6.1 через усилители 7 и пиковые детекторы 8 соединены с входами АЦП 9 и компаратора 10, соединенных по выходу с сигнальными входами ЭВМ 11. Формирователь 11.9 зондирующих импульсов ЭВМ 11 соединен с входами блока 4 импульсных источников 4.1 подсветки цели. Выход ЭВМ 11 по текущему угловому положению цели в азимутальной α и угломестной β плоскостях, относительным угловым скоростям , в соответствующих плоскостях, а также по текущей дальности L до цели соединен с выходной шиной 12 измерителя. Технический результат заключается в снижении массогабаритных характеристик и повышении надежности работы за счет исключения электромеханических элементов сканирования. 2 з.п. ф-лы, 7 ил.

Техническим результатом изобретения является повышение точности измерений скорости течения и расхода проточной воды в открытом водоеме. Предложенный способ включает последовательность следующих операций: - пошаговое (с заданным временным интервалом) ультразвуковое измерение скорости воды в поперечном сечении русла водоема на основе зондирования толщи воды с борта водоплавающего измерителя, например, установленного на радиоуправляемой лодке; - регистрация на каждом шаге измерений текущей величины горизонтального угла сноса измерителя течением воды по данным навигационных измерений, а также - текущей глубины водоема и радиальной скорости течения воды по временной задержке и допплеровскому сдвигу частоты ответных сигналов относительно частоты зондирующих ультразвуковых импульсов; - сравнение текущей глубины водоема и радиальной скорости течения воды с пороговыми значениями для выбора рационального режима измерений с точки зрения повышения точности измерений параметров водоема; - выбор в зависимости от знака и величины результатов сравнения рационального режима измерений, включающего рациональный выбор параметров зондирующих ультразвуковых импульсов, их вид модуляции и соответствующий вид цифровой корреляционной обработки ответных сигналов; - интегрирование результатов пошаговых измерений и определение средней скорости течения воды и расхода воды в поперечном сечении русла водоема на основе найденных значений текущей глубины водоема, радиальной скорости течения воды и угла сноса ультразвукового измерителя. 2 з.п. ф-лы, 2 ил.

Изобретение относится к выносным индикаторным постам (ВИП) для мониторинга и управления воздушным движением. Технический результат - сокращение времени развертывания ВИП. Для этого ВИП выполнен мобильным и содержит кузов, установленный на шасси автомобиля, и прицепную электростанцию. Кузов содержит аппаратный отсек, агрегатный отсек и отсек дополнительного оборудования. В аппаратном отсеке установлено не менее одного автоматизированного рабочего места (АРМ) оператора, шкаф обработки радиолокационной информации (РЛИ), шкаф радиосвязи, АРМ начальника связи и отопительные воздуховоды. В агрегатном отсеке установлен кондиционер, соединенный по очищенному воздуху с отопительными воздуховодами аппаратного отсека. В отсеке дополнительного оборудования расположены выносные средства сопряжения, кабельное и выносное беспроводное оборудование для быстрого дистанционного соединения с источниками РЛИ. Также имеются складная спутниковая антенна, первая антенна беспроводной связи с источниками РЛИ, вторая антенна беспроводной связи с источниками РЛИ, а также две мачты, с установленными на них антеннами радиосвязи с воздушными судами и антенна радиорелейной связи с потребителями РЛИ. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области определения местоположения источников радиоизлучений. Достигаемый технический результат изобретения - определение координат местоположения источника радиоизлучения известной интенсивности в пассивном режиме в условиях отсутствия взаимной временной синхронизации пунктов приема. Указанный результат достигается за счет того, что, по крайней мере, в трех взаимно удаленных пунктах приема измеряются уровни радиосигнала от источника радиоизлучения с известными энергетическими характеристиками, характеризующими величину затухания сигнала в канале распространения, затем по величине этого затухания рассчитывается расстояние от объекта излучения до каждой из приемных станций и, используя координатную информацию о местоположении приемных станций, осуществляется расчет координат объекта радиоизлучения. Устройство определения декартовых координат источника радиоизлучения включает в себя по каждому пункту приема ненаправленный антенный датчик типа полуволновой вибратор; радиоприемник с аналого-цифровым преобразователем на выходе; измерители энергии или амплитуды принятого сигнала; вычислитель расстояния до источника радиоизлучения и один объединяющий данные по пунктам приема вычислитель координат источника радиоизлучения. Координаты источника радиоизлучения рассчитываются по формулам, приведенным в тексте описания изобретения. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области авиации, в частности к посадочным системам

 


Наверх